Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 189

1.

Structural characterizations of glycerol kinase: unraveling phosphorylation-induced long-range activation.

Yeh JI, Kettering R, Saxl R, Bourand A, Darbon E, Joly N, Briozzo P, Deutscher J.

Biochemistry. 2009 Jan 20;48(2):346-56. doi: 10.1021/bi8009407.

2.

Structures of enterococcal glycerol kinase in the absence and presence of glycerol: correlation of conformation to substrate binding and a mechanism of activation by phosphorylation.

Yeh JI, Charrier V, Paulo J, Hou L, Darbon E, Claiborne A, Hol WG, Deutscher J.

Biochemistry. 2004 Jan 20;43(2):362-73.

PMID:
14717590
3.
4.
5.

Conserved active site aspartates and domain-domain interactions in regulatory properties of the sugar kinase superfamily.

Pettigrew DW, Smith GB, Thomas KP, Dodds DC.

Arch Biochem Biophys. 1998 Jan 15;349(2):236-45.

PMID:
9448710
6.
7.

Leishmania mexicana glycerol-3-phosphate dehydrogenase showed conformational changes upon binding a bi-substrate adduct.

Choe J, Guerra D, Michels PA, Hol WG.

J Mol Biol. 2003 May 30;329(2):335-49.

PMID:
12758080
8.

Crystallographic and solution studies of an activation loop mutant of the insulin receptor tyrosine kinase: insights into kinase mechanism.

Till JH, Ablooglu AJ, Frankel M, Bishop SM, Kohanski RA, Hubbard SR.

J Biol Chem. 2001 Mar 30;276(13):10049-55. Epub 2000 Dec 21.

9.

Conformational changes during the catalytic cycle of gluconate kinase as revealed by X-ray crystallography.

Kraft L, Sprenger GA, Lindqvist Y.

J Mol Biol. 2002 May 10;318(4):1057-69.

PMID:
12054802
10.

Glycerol dehydrogenase. structure, specificity, and mechanism of a family III polyol dehydrogenase.

Ruzheinikov SN, Burke J, Sedelnikova S, Baker PJ, Taylor R, Bullough PA, Muir NM, Gore MG, Rice DW.

Structure. 2001 Sep;9(9):789-802.

11.

Global consequences of activation loop phosphorylation on protein kinase A.

Steichen JM, Iyer GH, Li S, Saldanha SA, Deal MS, Woods VL Jr, Taylor SS.

J Biol Chem. 2010 Feb 5;285(6):3825-32. doi: 10.1074/jbc.M109.061820. Epub 2009 Dec 4.

12.

Crystal structures of mouse class II alcohol dehydrogenase reveal determinants of substrate specificity and catalytic efficiency.

Svensson S, Höög JO, Schneider G, Sandalova T.

J Mol Biol. 2000 Sep 15;302(2):441-53.

PMID:
10970744
13.
14.
15.

Active site mutants of Escherichia coli dethiobiotin synthetase: effects of mutations on enzyme catalytic and structural properties.

Yang G, Sandalova T, Lohman K, Lindqvist Y, Rendina AR.

Biochemistry. 1997 Apr 22;36(16):4751-60.

PMID:
9125495
16.

Crystal structure of a hyperactive Escherichia coli glycerol kinase mutant Gly230 --> Asp obtained using microfluidic crystallization devices.

Anderson MJ, DeLabarre B, Raghunathan A, Palsson BO, Brunger AT, Quake SR.

Biochemistry. 2007 May 15;46(19):5722-31. Epub 2007 Apr 19.

PMID:
17441732
17.

Analysis of the structural determinants underlying discrimination between substrate and solvent in beta-phosphoglucomutase catalysis.

Dai J, Finci L, Zhang C, Lahiri S, Zhang G, Peisach E, Allen KN, Dunaway-Mariano D.

Biochemistry. 2009 Mar 10;48(9):1984-95. doi: 10.1021/bi801653r.

18.
19.

The role of phosphagen specificity loops in arginine kinase.

Azzi A, Clark SA, Ellington WR, Chapman MS.

Protein Sci. 2004 Mar;13(3):575-85.

20.

Interconversion of ATP binding and conformational free energies by tryptophanyl-tRNA synthetase: structures of ATP bound to open and closed, pre-transition-state conformations.

Retailleau P, Huang X, Yin Y, Hu M, Weinreb V, Vachette P, Vonrhein C, Bricogne G, Roversi P, Ilyin V, Carter CW Jr.

J Mol Biol. 2003 Jan 3;325(1):39-63.

PMID:
12473451
Items per page

Supplemental Content

Write to the Help Desk