Format
Items per page
Sort by

Send to:

Choose Destination

Links from PubMed

Items: 1 to 20 of 112

1.

Determination of cell fate selection during phage lambda infection.

St-Pierre F, Endy D.

Proc Natl Acad Sci U S A. 2008 Dec 30;105(52):20705-10. doi: 10.1073/pnas.0808831105. Epub 2008 Dec 19.

2.

To lyse or not to lyse: transient-mediated stochastic fate determination in cells infected by bacteriophages.

Joh RI, Weitz JS.

PLoS Comput Biol. 2011 Mar;7(3):e1002006. doi: 10.1371/journal.pcbi.1002006. Epub 2011 Mar 10.

3.

Decision making at a subcellular level determines the outcome of bacteriophage infection.

Zeng L, Skinner SO, Zong C, Sippy J, Feiss M, Golding I.

Cell. 2010 May 14;141(4):682-91. doi: 10.1016/j.cell.2010.03.034.

4.

Following cell-fate in E. coli after infection by phage lambda.

Zeng L, Golding I.

J Vis Exp. 2011 Oct 14;(56):e3363. doi: 10.3791/3363.

5.
6.

Stochastic cellular fate decision making by multiple infecting lambda phage.

Robb ML, Shahrezaei V.

PLoS One. 2014 Aug 8;9(8):e103636. doi: 10.1371/journal.pone.0103636. eCollection 2014.

7.

Commitment to lysogeny is preceded by a prolonged period of sensitivity to the late lytic regulator Q in bacteriophage λ.

Svenningsen SL, Semsey S.

J Bacteriol. 2014 Oct;196(20):3582-8. doi: 10.1128/JB.01705-14. Epub 2014 Aug 4.

8.

Bacteriophage lambda: a paradigm revisited.

Fogg PC, Allison HE, Saunders JR, McCarthy AJ.

J Virol. 2010 Jul;84(13):6876-9. doi: 10.1128/JVI.02177-09. Epub 2010 Apr 7.

9.

Why do phage play dice?

Avlund M, Dodd IB, Semsey S, Sneppen K, Krishna S.

J Virol. 2009 Nov;83(22):11416-20. doi: 10.1128/JVI.01057-09. Epub 2009 Sep 9. Erratum in: J Virol. 2012 Mar;86(5):2898.

10.

Studies on Escherichia coli HflKC suggest the presence of an unidentified λ factor that influences the lysis-lysogeny switch.

Bandyopadhyay K, Parua PK, Datta AB, Parrack P.

BMC Microbiol. 2011 Feb 17;11:34. doi: 10.1186/1471-2180-11-34.

11.
12.

Nongenetic individuality in the host-phage interaction.

Pearl S, Gabay C, Kishony R, Oppenheim A, Balaban NQ.

PLoS Biol. 2008 May 20;6(5):e120. doi: 10.1371/journal.pbio.0060120.

13.

The bacteriophage lambda attachment site in wild strains of Escherichia coli.

Kuhn J, Campbell A.

J Mol Evol. 2001 Dec;53(6):607-14.

PMID:
11677620
14.

HflD, an Escherichia coli protein involved in the lambda lysis-lysogeny switch, impairs transcription activation by lambdaCII.

Parua PK, Mondal A, Parrack P.

Arch Biochem Biophys. 2010 Jan 15;493(2):175-83. doi: 10.1016/j.abb.2009.10.010. Epub 2009 Oct 22.

PMID:
19853572
15.

Factors influencing lysis time stochasticity in bacteriophage λ.

Dennehy JJ, Wang IN.

BMC Microbiol. 2011 Aug 2;11:174. doi: 10.1186/1471-2180-11-174.

16.

Effect of salt shock on stability of lambdaimm434 lysogens.

Shkilnyj P, Koudelka GB.

J Bacteriol. 2007 Apr;189(8):3115-23. Epub 2007 Feb 16.

18.

Stochastic holin expression can account for lysis time variation in the bacteriophage λ.

Singh A, Dennehy JJ.

J R Soc Interface. 2014 Apr 9;11(95):20140140. doi: 10.1098/rsif.2014.0140. Print 2014 Jun 6.

19.

The Escherichia coli CRISPR system protects from λ lysogenization, lysogens, and prophage induction.

Edgar R, Qimron U.

J Bacteriol. 2010 Dec;192(23):6291-4. doi: 10.1128/JB.00644-10. Epub 2010 Oct 1.

20.

Regulation of bacteriophage lambda development by guanosine 5'-diphosphate-3'-diphosphate.

Slomińska M, Neubauer P, Wegrzyn G.

Virology. 1999 Sep 30;262(2):431-41.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk