Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 180

1.

Acetaldehyde tolerance in Saccharomyces cerevisiae involves the pentose phosphate pathway and oleic acid biosynthesis.

Matsufuji Y, Fujimura S, Ito T, Nishizawa M, Miyaji T, Nakagawa J, Ohyama T, Tomizuka N, Nakagawa T.

Yeast. 2008 Nov;25(11):825-33. doi: 10.1002/yea.1637.

2.

Tolerance to furfural-induced stress is associated with pentose phosphate pathway genes ZWF1, GND1, RPE1, and TKL1 in Saccharomyces cerevisiae.

Gorsich SW, Dien BS, Nichols NN, Slininger PJ, Liu ZL, Skory CD.

Appl Microbiol Biotechnol. 2006 Jul;71(3):339-49. Epub 2005 Oct 13.

PMID:
16222531
3.

Transcription factor Stb5p is essential for acetaldehyde tolerance in Saccharomyces cerevisiae.

Matsufuji Y, Nakagawa T, Fujimura S, Tani A, Nakagawa J.

J Basic Microbiol. 2010 Oct;50(5):494-8. doi: 10.1002/jobm.200900391.

PMID:
20806246
4.

Cu, Zn superoxide dismutase and NADP(H) homeostasis are required for tolerance of endoplasmic reticulum stress in Saccharomyces cerevisiae.

Tan SX, Teo M, Lam YT, Dawes IW, Perrone GG.

Mol Biol Cell. 2009 Mar;20(5):1493-508. doi: 10.1091/mbc.E08-07-0697. Epub 2009 Jan 7.

6.

Genome-wide expression analyses: Metabolic adaptation of Saccharomyces cerevisiae to high sugar stress.

Erasmus DJ, van der Merwe GK, van Vuuren HJ.

FEMS Yeast Res. 2003 Jun;3(4):375-99.

8.

Comprehensive phenotypic analysis for identification of genes affecting growth under ethanol stress in Saccharomyces cerevisiae.

Yoshikawa K, Tanaka T, Furusawa C, Nagahisa K, Hirasawa T, Shimizu H.

FEMS Yeast Res. 2009 Feb;9(1):32-44. doi: 10.1111/j.1567-1364.2008.00456.x. Epub 2008 Nov 13.

9.

The Saccharomyces cerevisiae zinc factor protein Stb5p is required as a basal regulator of the pentose phosphate pathway.

Cadière A, Galeote V, Dequin S.

FEMS Yeast Res. 2010 Nov;10(7):819-27. doi: 10.1111/j.1567-1364.2010.00672.x. Epub 2010 Aug 25.

11.

Identification of target genes conferring ethanol stress tolerance to Saccharomyces cerevisiae based on DNA microarray data analysis.

Hirasawa T, Yoshikawa K, Nakakura Y, Nagahisa K, Furusawa C, Katakura Y, Shimizu H, Shioya S.

J Biotechnol. 2007 Aug 1;131(1):34-44. Epub 2007 May 24.

PMID:
17604866
13.

Engineering redox cofactor utilization for detoxification of glycolaldehyde, a key inhibitor of bioethanol production, in yeast Saccharomyces cerevisiae.

Jayakody LN, Horie K, Hayashi N, Kitagaki H.

Appl Microbiol Biotechnol. 2013 Jul;97(14):6589-600. doi: 10.1007/s00253-013-4997-4. Epub 2013 Jun 7. Erratum in: Appl Microbiol Biotechnol. 2014 Jul;98(14):6523.

PMID:
23744286
14.
15.
16.

Genome-wide transcriptional response of a Saccharomyces cerevisiae strain with an altered redox metabolism.

Bro C, Regenberg B, Nielsen J.

Biotechnol Bioeng. 2004 Feb 5;85(3):269-76.

PMID:
14748081
18.

Systematic analysis of yeast strains with possible defects in lipid metabolism.

Daum G, Tuller G, Nemec T, Hrastnik C, Balliano G, Cattel L, Milla P, Rocco F, Conzelmann A, Vionnet C, Kelly DE, Kelly S, Schweizer E, Schüller HJ, Hojad U, Greiner E, Finger K.

Yeast. 1999 May;15(7):601-14.

19.

Novel physiological roles for glutathione in sequestering acetaldehyde to confer acetaldehyde tolerance in Saccharomyces cerevisiae.

Matsufuji Y, Yamamoto K, Yamauchi K, Mitsunaga T, Hayakawa T, Nakagawa T.

Appl Microbiol Biotechnol. 2013 Jan;97(1):297-303. doi: 10.1007/s00253-012-4147-4. Epub 2012 May 22.

PMID:
22615054
20.

Importance of glucose-6-phosphate dehydrogenase (G6PDH) for vanillin tolerance in Saccharomyces cerevisiae.

Nguyen TT, Kitajima S, Izawa S.

J Biosci Bioeng. 2014 Sep;118(3):263-9. doi: 10.1016/j.jbiosc.2014.02.025. Epub 2014 Apr 13.

PMID:
24725964
Items per page

Supplemental Content

Write to the Help Desk