Format
Items per page
Sort by

Send to:

Choose Destination

Links from PubMed

Items: 1 to 20 of 119

1.

NagA-dependent uptake of N-acetyl-glucosamine and N-acetyl-chitin oligosaccharides across the outer membrane of Caulobacter crescentus.

Eisenbeis S, Lohmiller S, Valdebenito M, Leicht S, Braun V.

J Bacteriol. 2008 Aug;190(15):5230-8. doi: 10.1128/JB.00194-08. Epub 2008 Jun 6.

2.

ExbBD-dependent transport of maltodextrins through the novel MalA protein across the outer membrane of Caulobacter crescentus.

Neugebauer H, Herrmann C, Kammer W, Schwarz G, Nordheim A, Braun V.

J Bacteriol. 2005 Dec;187(24):8300-11.

3.

TonB-dependent maltose transport by Caulobacter crescentus.

Lohmiller S, Hantke K, Patzer SI, Braun V.

Microbiology. 2008 Jun;154(Pt 6):1748-54. doi: 10.1099/mic.0.2008/017350-0.

PMID:
18524929
4.

Extracellular gluco-oligosaccharide degradation by Caulobacter crescentus.

Presley GN, Payea MJ, Hurst LR, Egan AE, Martin BS, Periyannan GR.

Microbiology. 2014 Mar;160(Pt 3):635-45. doi: 10.1099/mic.0.072314-0. Epub 2014 Jan 13.

PMID:
24421404
5.

Analysis of the outer membrane proteome of Caulobacter crescentus by two-dimensional electrophoresis and mass spectrometry.

Phadke ND, Molloy MP, Steinhoff SA, Ulintz PJ, Andrews PC, Maddock JR.

Proteomics. 2001 May;1(5):705-20.

PMID:
11678040
6.

Identification and regulation of the N-acetylglucosamine utilization pathway of the plant pathogenic bacterium Xanthomonas campestris pv. campestris.

Boulanger A, Déjean G, Lautier M, Glories M, Zischek C, Arlat M, Lauber E.

J Bacteriol. 2010 Mar;192(6):1487-97. doi: 10.1128/JB.01418-09. Epub 2010 Jan 15.

8.

N-acetylglucosamine 6-phosphate deacetylase (nagA) is required for N-acetyl glucosamine assimilation in Gluconacetobacter xylinus.

Yadav V, Panilaitis B, Shi H, Numuta K, Lee K, Kaplan DL.

PLoS One. 2011;6(6):e18099. doi: 10.1371/journal.pone.0018099. Epub 2011 Jun 2.

9.
10.

Characterization of glycosyl hydrolase family 3 beta-N-acetylglucosaminidases from Thermotoga maritima and Thermotoga neapolitana.

Choi KH, Seo JY, Park KM, Park CS, Cha J.

J Biosci Bioeng. 2009 Dec;108(6):455-9. doi: 10.1016/j.jbiosc.2009.06.003.

PMID:
19914575
11.
12.

Analysis of the Caulobacter crescentus Zur regulon reveals novel insights in zinc acquisition by TonB-dependent outer membrane proteins.

Mazzon RR, Braz VS, da Silva Neto JF, do Valle Marques M.

BMC Genomics. 2014 Aug 28;15:734. doi: 10.1186/1471-2164-15-734.

13.

The importance of chitobiase and N-acetylglucosamine (GlcNAc) uptake in N,N'-diacetylchitobiose [(GlcNAc)2] utilization by Serratia marcescens 2,170.

Toratani T, Shoji T, Ikehara T, Suzuki K, Watanabe T.

Microbiology. 2008 May;154(Pt 5):1326-32. doi: 10.1099/mic.0.2007/016246-0.

PMID:
18451041
14.

Genomic analysis and initial characterization of the chitinolytic system of Microbulbifer degradans strain 2-40.

Howard MB, Ekborg NA, Taylor LE, Weiner RM, Hutcheson SW.

J Bacteriol. 2003 Jun;185(11):3352-60.

15.
16.

TonB-dependent receptors-structural perspectives.

Ferguson AD, Deisenhofer J.

Biochim Biophys Acta. 2002 Oct 11;1565(2):318-32. Review.

18.

Functional analysis of the N-acetylglucosamine metabolic genes of Streptomyces coelicolor and role in control of development and antibiotic production.

Świątek MA, Tenconi E, Rigali S, van Wezel GP.

J Bacteriol. 2012 Mar;194(5):1136-44. doi: 10.1128/JB.06370-11. Epub 2011 Dec 22.

19.

The chitobiose transporter, chbC, is required for chitin utilization in Borrelia burgdorferi.

Rhodes RG, Atoyan JA, Nelson DR.

BMC Microbiol. 2010 Jan 26;10:21. doi: 10.1186/1471-2180-10-21.

20.

Proteomic analysis of the Caulobacter crescentus stalk indicates competence for nutrient uptake.

Ireland MM, Karty JA, Quardokus EM, Reilly JP, Brun YV.

Mol Microbiol. 2002 Aug;45(4):1029-41.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk