Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 483

1.

Ionic strength and composition affect the mobility of surface-modified Fe0 nanoparticles in water-saturated sand columns.

Saleh N, Kim HJ, Phenrat T, Matyjaszewski K, Tilton RD, Lowry GV.

Environ Sci Technol. 2008 May 1;42(9):3349-55.

PMID:
18522117
2.

Fe0 nanoparticles remain mobile in porous media after aging due to slow desorption of polymeric surface modifiers.

Kim HJ, Phenrat T, Tilton RD, Lowry GV.

Environ Sci Technol. 2009 May 15;43(10):3824-30.

PMID:
19544894
3.

Particle size distribution, concentration, and magnetic attraction affect transport of polymer-modified Fe(0) nanoparticles in sand columns.

Phenrat T, Kim HJ, Fagerlund F, Illangasekare T, Tilton RD, Lowry GV.

Environ Sci Technol. 2009 Jul 1;43(13):5079-85.

PMID:
19673310
4.

Empirical correlations to estimate agglomerate size and deposition during injection of a polyelectrolyte-modified Fe0 nanoparticle at high particle concentration in saturated sand.

Phenrat T, Kim HJ, Fagerlund F, Illangasekare T, Lowry GV.

J Contam Hydrol. 2010 Nov 25;118(3-4):152-64. doi: 10.1016/j.jconhyd.2010.09.002. Epub 2010 Sep 16.

PMID:
20926157
5.

Effect of adsorbed polyelectrolytes on nanoscale zero valent iron particle attachment to soil surface models.

Sirk KM, Saleh NB, Phenrat T, Kim HJ, Dufour B, Jeongbin O, Golas PL, Matyjaszewski K, Lowry GV, Tilton RD.

Environ Sci Technol. 2009 May 15;43(10):3803-8.

PMID:
19544891
6.

Transport and deposition of polymer-modified Fe0 nanoparticles in 2-D heterogeneous porous media: effects of particle concentration, Fe0 content, and coatings.

Phenrat T, Cihan A, Kim HJ, Mital M, Illangasekare T, Lowry GV.

Environ Sci Technol. 2010 Dec 1;44(23):9086-93. doi: 10.1021/es102398e. Epub 2010 Nov 8.

PMID:
21058703
7.

Adsorbed polyelectrolyte coatings decrease Fe(0) nanoparticle reactivity with TCE in water: conceptual model and mechanisms.

Phenrat T, Liu Y, Tilton RD, Lowry GV.

Environ Sci Technol. 2009 Mar 1;43(5):1507-14.

PMID:
19350927
8.

Adsorbed polymer and NOM limits adhesion and toxicity of nano scale zerovalent iron to E. coli.

Li Z, Greden K, Alvarez PJ, Gregory KB, Lowry GV.

Environ Sci Technol. 2010 May 1;44(9):3462-7. doi: 10.1021/es9031198.

PMID:
20355703
9.

Transport characteristics of surface-modified nanoscale zero-valent iron in porous media.

Kanel SR, Choi H.

Water Sci Technol. 2007;55(1-2):157-62.

PMID:
17305135
10.

Effect of kaolinite, silica fines and pH on transport of polymer-modified zero valent iron nano-particles in heterogeneous porous media.

Kim HJ, Phenrat T, Tilton RD, Lowry GV.

J Colloid Interface Sci. 2012 Mar 15;370(1):1-10. doi: 10.1016/j.jcis.2011.12.059. Epub 2012 Jan 2.

PMID:
22284571
11.

Reduced aggregation and sedimentation of zero-valent iron nanoparticles in the presence of guar gum.

Tiraferri A, Chen KL, Sethi R, Elimelech M.

J Colloid Interface Sci. 2008 Aug;324(1-2):71-9. doi: 10.1016/j.jcis.2008.04.064. Epub 2008 May 7.

PMID:
18508073
12.

Natural organic matter enhanced mobility of nano zerovalent iron.

Johnson RL, Johnson GO, Nurmi JT, Tratnyek PG.

Environ Sci Technol. 2009 Jul 15;43(14):5455-60.

PMID:
19708381
13.

Reduced transport potential of a palladium-doped zero valent iron nanoparticle in a water saturated loamy sand.

Basnet M, Di Tommaso C, Ghoshal S, Tufenkji N.

Water Res. 2015 Jan 1;68:354-63.

PMID:
25462742
14.

Rhamnolipid biosurfactant and soy protein act as effective stabilizers in the aggregation and transport of palladium-doped zerovalent iron nanoparticles in saturated porous media.

Basnet M, Ghoshal S, Tufenkji N.

Environ Sci Technol. 2013;47(23):13355-64. doi: 10.1021/es402619v. Epub 2013 Nov 15.

PMID:
24237158
15.

In situ testing of metallic iron nanoparticle mobility and reactivity in a shallow granular aquifer.

Bennett P, He F, Zhao D, Aiken B, Feldman L.

J Contam Hydrol. 2010 Jul 30;116(1-4):35-46. doi: 10.1016/j.jconhyd.2010.05.006. Epub 2010 May 26.

PMID:
20542350
16.

Chemical transformations during aging of zerovalent iron nanoparticles in the presence of common groundwater dissolved constituents.

Reinsch BC, Forsberg B, Penn RL, Kim CS, Lowry GV.

Environ Sci Technol. 2010 May 1;44(9):3455-61. doi: 10.1021/es902924h.

PMID:
20380376
17.

Mobility enhancement of nanoscale zero-valent iron in carbonate porous media through co-injection of polyelectrolytes.

Laumann S, Micić V, Hofmann T.

Water Res. 2014 Mar 1;50:70-9. doi: 10.1016/j.watres.2013.11.040. Epub 2013 Dec 4.

PMID:
24361704
18.

Polymer-modified Fe0 nanoparticles target entrapped NAPL in two dimensional porous media: effect of particle concentration, NAPL saturation, and injection strategy.

Phenrat T, Fagerlund F, Illangasekare T, Lowry GV, Tilton RD.

Environ Sci Technol. 2011 Jul 15;45(14):6102-9. doi: 10.1021/es200577n. Epub 2011 Jun 16.

PMID:
21678951
19.

Characteristics of two types of stabilized nano zero-valent iron and transport in porous media.

Lin YH, Tseng HH, Wey MY, Lin MD.

Sci Total Environ. 2010 Apr 15;408(10):2260-7. doi: 10.1016/j.scitotenv.2010.01.039. Epub 2010 Feb 16.

PMID:
20163828
20.

Influence of calcium ions on the colloidal stability of surface-modified nano zero-valent iron in the absence or presence of humic acid.

Dong H, Lo IM.

Water Res. 2013 May 1;47(7):2489-96. doi: 10.1016/j.watres.2013.02.022. Epub 2013 Feb 16.

PMID:
23466217
Items per page

Supplemental Content

Write to the Help Desk