Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 87

Similar articles for PubMed (Select 18264422)

1.
2.

Modeling fluorescence collection from single molecules in microspheres: effects of position, orientation, and frequency.

Hill SC, Saleheen HI, Barnes MD, Whitten WB, Ramsey JM.

Appl Opt. 1996 Nov 1;35(31):6278-88. doi: 10.1364/AO.35.006278.

PMID:
21127654
4.

Investigating the plasmonics of a dipole-excited silver nanoshell: Mie theory versus finite element method.

Khoury CG, Norton SJ, Vo-Dinh T.

Nanotechnology. 2010 Aug 6;21(31):315203. doi: 10.1088/0957-4484/21/31/315203. Epub 2010 Jul 15.

PMID:
20634565
5.

Collection of fluorescence from single molecules in microspheres: effects of illumination geometry.

Hill SC, Barnes MD, Whitten WB, Ramsey JM.

Appl Opt. 1997 Jul 1;36(19):4425-37.

PMID:
18259232
6.

Single-scattering theory of light diffraction by a circular subwavelength aperture in a finitely conducting screen.

Popov E, Nevière M, Sentenac A, Bonod N, Fehrembach AL, Wenger J, Lenne PF, Rigneault H.

J Opt Soc Am A Opt Image Sci Vis. 2007 Feb;24(2):339-58.

PMID:
17206250
7.

Whispering-gallery mode resonators: Surface enhanced Raman scattering without plasmons.

Ausman LK, Schatz GC.

J Chem Phys. 2008 Aug 7;129(5):054704. doi: 10.1063/1.2961012.

PMID:
18698918
8.

Surface enhanced Raman scattering (SERS) by molecules adsorbed at spherical particles.

Kerker M, Wang DS, Chew H.

Appl Opt. 1980 Oct 1;19(19):3373-88. doi: 10.1364/AO.19.003373.

PMID:
20234623
9.

Surface enhanced Raman scattering (SERS) by molecules adsorbed at spherical particles: errata.

Kerker M, Wang DS, Chew H.

Appl Opt. 1980 Dec 15;19(24):4159-74. doi: 10.1364/AO.19.004159.

PMID:
20309031
10.

Light scattering from an optically active sphere into a circular aperture.

Pendleton JD, Rosen DL.

Appl Opt. 1998 Nov 20;37(33):7897-905.

PMID:
18301631
11.

Fluorescence from airborne microparticles: dependence on size, concentration of fluorophores, and illumination intensity.

Hill SC, Pinnick RG, Niles S, Fell NF, Pan YL, Bottiger J, Bronk BV, Holler S, Chang RK.

Appl Opt. 2001 Jun 20;40(18):3005-13.

PMID:
18357318
12.

Analysis of photobleaching in single-molecule multicolor excitation and Förster resonance energy transfer measurements.

Eggeling C, Widengren J, Brand L, Schaffer J, Felekyan S, Seidel CA.

J Phys Chem A. 2006 Mar 9;110(9):2979-95.

PMID:
16509620
13.
15.

Dipole radiation within one-dimensional anisotropic microcavities: a simulation method.

Penninck L, De Visschere P, Beeckman J, Neyts K.

Opt Express. 2011 Sep 12;19(19):18558-76. doi: 10.1364/OE.19.018558.

PMID:
21935225
16.

Distance dependent quenching effect in nanoparticle dimers.

Polemi A, Shuford KL.

J Chem Phys. 2012 May 14;136(18):184703. doi: 10.1063/1.4711759.

PMID:
22583305
17.

On the importance of incorporating dipole reradiation in the modeling of surface enhanced Raman scattering from spheres.

Ausman LK, Schatz GC.

J Chem Phys. 2009 Aug 28;131(8):084708. doi: 10.1063/1.3211969.

PMID:
19725622
19.

Near-field optical excitation as a dipole-dipole energy transfer process.

Sekatskii SK, Dietler G.

J Microsc. 1999 May-Jun;194(Pt 2-3):255-9.

PMID:
11388248
20.

Discrete dipole approximation for the study of radiation dynamics in a magnetodielectric environment.

Rahmani A, Chaumet PC, Bryant GW.

Opt Express. 2010 Apr 12;18(8):8499-504. doi: 10.1364/OE.18.008499.

PMID:
20588696
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk