Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 161

Similar articles for PubMed (Select 18052382)

1.

Oxide-driven carbon nanotube growth in supported catalyst CVD.

Rümmeli MH, Schäffel F, Kramberger C, Gemming T, Bachmatiuk A, Kalenczuk RJ, Rellinghaus B, Büchner B, Pichler T.

J Am Chem Soc. 2007 Dec 26;129(51):15772-3. Epub 2007 Dec 6.

PMID:
18052382
2.

CFD-aerosol modeling of the effects of wall composition and inlet conditions on carbon nanotube catalyst particle activity.

Brown DP, Nasibulin AG, Kauppinen EI.

J Nanosci Nanotechnol. 2008 Aug;8(8):3803-19.

PMID:
19049135
3.

Influence of the catalyst type on the growth of carbon nanotubes via methane chemical vapor deposition.

Jodin L, Dupuis AC, Rouvière E, Reiss P.

J Phys Chem B. 2006 Apr 13;110(14):7328-33.

PMID:
16599506
4.

Investigation of catalytic properties of Al2O3 particles in the growth of single-walled carbon nanotubes.

Liu H, Takagi D, Chiashi S, Chokan T, Homma Y.

J Nanosci Nanotechnol. 2010 Jun;10(6):4068-73.

PMID:
20355416
5.
6.

A multiscale approach for modeling the early stage growth of single and multiwall carbon nanotubes produced by a metal-catalyzed synthesis process.

Elliott JA, Hamm M, Shibuta Y.

J Chem Phys. 2009 Jan 21;130(3):034704. doi: 10.1063/1.3058595.

PMID:
19173534
7.

Effects of the Fe-Co interaction on the growth of multiwall carbon nanotubes.

Li Z, Dervishi E, Xu Y, Ma X, Saini V, Biris AS, Little R, Biris AR, Lupu D.

J Chem Phys. 2008 Aug 21;129(7):074712. doi: 10.1063/1.2971180.

PMID:
19044797
8.

Investigating the outskirts of Fe and Co catalyst particles in alumina-supported catalytic CVD carbon nanotube growth.

Rümmeli MH, Schäffel F, Bachmatiuk A, Adebimpe D, Trotter G, Börrnert F, Scott A, Coric E, Sparing M, Rellinghaus B, McCormick PG, Cuniberti G, Knupfer M, Schultz L, Büchner B.

ACS Nano. 2010 Feb 23;4(2):1146-52. doi: 10.1021/nn9016108.

PMID:
20088596
9.
10.

Nanoscale zirconia as a nonmetallic catalyst for graphitization of carbon and growth of single- and multiwall carbon nanotubes.

Steiner SA 3rd, Baumann TF, Bayer BC, Blume R, Worsley MA, MoberlyChan WJ, Shaw EL, Schlögl R, Hart AJ, Hofmann S, Wardle BL.

J Am Chem Soc. 2009 Sep 2;131(34):12144-54. doi: 10.1021/ja902913r.

PMID:
19663436
11.

Abrasion as a catalyst deposition technique for carbon nanotube growth.

Alvarez NT, Pint CL, Hauge RH, Tour JM.

J Am Chem Soc. 2009 Oct 21;131(41):15041-8. doi: 10.1021/ja905681a.

PMID:
19764728
12.

Vertically aligned dense carbon nanotube growth with diameter control by block copolymer micelle catalyst templates.

Liu X, Bigioni TP, Xu Y, Cassell AM, Cruden BA.

J Phys Chem B. 2006 Oct 19;110(41):20102-6.

PMID:
17034181
13.

Formation of catalyst nanoparticles and nucleation of carbon nanotubes in chemical vapor deposition.

Verissimo C, Aguiar MR, Moshkalev SA.

J Nanosci Nanotechnol. 2009 Jul;9(7):4459-66.

PMID:
19916474
14.
15.

CVD growth of single-walled carbon nanotubes with narrow diameter distribution over Fe/MgO catalyst and their fluorescence spectroscopy.

Ago H, Imamura S, Okazaki T, Saito T, Yumura M, Tsuji M.

J Phys Chem B. 2005 May 26;109(20):10035-41.

PMID:
16852214
16.

Exploring advantages of diverse carbon nanotube forests with tailored structures synthesized by supergrowth from engineered catalysts.

Zhao B, Futaba DN, Yasuda S, Akoshima M, Yamada T, Hata K.

ACS Nano. 2009 Jan 27;3(1):108-14. doi: 10.1021/nn800648a.

PMID:
19206256
17.

Growth, new growth, and amplification of carbon nanotubes as a function of catalyst composition.

Crouse CA, Maruyama B, Colorado R Jr, Back T, Barron AR.

J Am Chem Soc. 2008 Jun 25;130(25):7946-54. doi: 10.1021/ja800233b. Epub 2008 May 29.

PMID:
18507464
18.

Anomalous electrochemical dissolution and passivation of iron growth catalysts in carbon nanotubes.

Lyon JL, Stevenson KJ.

Langmuir. 2007 Oct 23;23(22):11311-8. Epub 2007 Oct 2.

PMID:
17910488
19.

Wet catalyst-support films for production of vertically aligned carbon nanotubes.

Alvarez NT, Hamilton CE, Pint CL, Orbaek A, Yao J, Frosinini AL, Barron AR, Tour JM, Hauge RH.

ACS Appl Mater Interfaces. 2010 Jul;2(7):1851-6. doi: 10.1021/am100128m.

PMID:
20540507
20.

Precise control of the number of walls formed during carbon nanotube growth using chemical vapor deposition.

Yang HS, Zhang L, Dong XH, Zhu WM, Zhu J, Nelson BJ, Zhang XB.

Nanotechnology. 2012 Feb 17;23(6):065604. doi: 10.1088/0957-4484/23/6/065604. Epub 2012 Jan 17.

PMID:
22248487
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk