Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 203

Similar articles for PubMed (Select 17994767)

1.

Novel mutations in Smad proteins that inhibit signaling by the transforming growth factor beta in mammalian cells.

Prokova V, Mavridou S, Papakosta P, Petratos K, Kardassis D.

Biochemistry. 2007 Dec 4;46(48):13775-86. Epub 2007 Nov 10.

PMID:
17994767
2.

Novel regulation of Smad3 oligomerization and DNA binding by its linker domain.

Vasilaki E, Siderakis M, Papakosta P, Skourti-Stathaki K, Mavridou S, Kardassis D.

Biochemistry. 2009 Sep 8;48(35):8366-78. doi: 10.1021/bi9005489.

PMID:
19645436
3.

Differential ubiquitination defines the functional status of the tumor suppressor Smad4.

Morén A, Hellman U, Inada Y, Imamura T, Heldin CH, Moustakas A.

J Biol Chem. 2003 Aug 29;278(35):33571-82. Epub 2003 Jun 5.

4.

Functional consequences of tumorigenic missense mutations in the amino-terminal domain of Smad4.

Morén A, Itoh S, Moustakas A, Dijke P, Heldin CH.

Oncogene. 2000 Sep 7;19(38):4396-404.

5.

Characterization of a novel transcriptionally active domain in the transforming growth factor beta-regulated Smad3 protein.

Prokova V, Mavridou S, Papakosta P, Kardassis D.

Nucleic Acids Res. 2005 Jul 1;33(12):3708-21. Print 2005.

6.

Novel dominant negative Smad antagonists to TGFbeta signaling.

Ho J, Chen H, Lebrun JJ.

Cell Signal. 2007 Jul;19(7):1565-74. Epub 2007 Feb 15.

PMID:
17360157
7.

Mechanism of a transcriptional cross talk between transforming growth factor-beta-regulated Smad3 and Smad4 proteins and orphan nuclear receptor hepatocyte nuclear factor-4.

Chou WC, Prokova V, Shiraishi K, Valcourt U, Moustakas A, Hadzopoulou-Cladaras M, Zannis VI, Kardassis D.

Mol Biol Cell. 2003 Mar;14(3):1279-94.

9.

A novel dominant negative Smad2 mutation in a TGFbeta resistant human carcinoma cell line.

Tsang KJ, Tsang D, Brown TN, Crowe DL.

Anticancer Res. 2002 Jan-Feb;22(1A):13-9.

PMID:
12017275
10.

Molecular and functional consequences of Smad4 C-terminal missense mutations in colorectal tumour cells.

De Bosscher K, Hill CS, Nicolás FJ.

Biochem J. 2004 Apr 1;379(Pt 1):209-16.

11.

Roles for lysine residues of the MH2 domain of Smad3 in transforming growth factor-beta signaling.

Imoto S, Sugiyama K, Sekine Y, Matsuda T.

FEBS Lett. 2005 May 23;579(13):2853-62. Epub 2005 Apr 26.

13.

Nuclear targeting of transforming growth factor-beta-activated Smad complexes.

Chen HB, Rud JG, Lin K, Xu L.

J Biol Chem. 2005 Jun 3;280(22):21329-36. Epub 2005 Mar 30.

14.

Crystal structure of a transcriptionally active Smad4 fragment.

Qin B, Lam SS, Lin K.

Structure. 1999 Dec 15;7(12):1493-503.

PMID:
10647180
15.
16.

The L3 loop and C-terminal phosphorylation jointly define Smad protein trimerization.

Chacko BM, Qin B, Correia JJ, Lam SS, de Caestecker MP, Lin K.

Nat Struct Biol. 2001 Mar;8(3):248-53.

PMID:
11224571
17.

Sedimentation studies reveal a direct role of phosphorylation in Smad3:Smad4 homo- and hetero-trimerization.

Correia JJ, Chacko BM, Lam SS, Lin K.

Biochemistry. 2001 Feb 6;40(5):1473-82.

PMID:
11170475
18.
19.

Linking Smads and transcriptional activation.

Inman GJ.

Biochem J. 2005 Feb 15;386(Pt 1):e1-e3.

20.

Smad3 phosphoisoform-mediated signaling during sporadic human colorectal carcinogenesis.

Matsuzaki K.

Histol Histopathol. 2006 Jun;21(6):645-62. Review.

PMID:
16528675
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk