Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 908

1.

Single-exciton optical gain in semiconductor nanocrystals.

Klimov VI, Ivanov SA, Nanda J, Achermann M, Bezel I, McGuire JA, Piryatinski A.

Nature. 2007 May 24;447(7143):441-6.

PMID:
17522678
[PubMed]
2.

Suppressed auger recombination in "giant" nanocrystals boosts optical gain performance.

García-Santamaría F, Chen Y, Vela J, Schaller RD, Hollingsworth JA, Klimov VI.

Nano Lett. 2009 Oct;9(10):3482-8. doi: 10.1021/nl901681d.

PMID:
19505082
[PubMed]
Free PMC Article
4.

Optical gain and stimulated emission in nanocrystal quantum dots.

Klimov VI, Mikhailovsky AA, Xu S, Malko A, Hollingsworth JA, Leatherdale CA, Eisler H, Bawendi MG.

Science. 2000 Oct 13;290(5490):314-7.

PMID:
11030645
[PubMed]
Free Article
5.

Spectral and dynamic properties of excitons and biexcitons in type-II semiconductor nanocrystals.

Ivanov SA, Achermann M.

ACS Nano. 2010 Oct 26;4(10):5994-6000. doi: 10.1021/nn101357q.

PMID:
20873722
[PubMed]
6.

Energy-transfer pumping of semiconductor nanocrystals using an epitaxial quantum well.

Achermann M, Petruska MA, Kos S, Smith DL, Koleske DD, Klimov VI.

Nature. 2004 Jun 10;429(6992):642-6.

PMID:
15190347
[PubMed]
7.

Effect of quantum and dielectric confinement on the exciton-exciton interaction energy in type II core/shell semiconductor nanocrystals.

Piryatinski A, Ivanov SA, Tretiak S, Klimov VI.

Nano Lett. 2007 Jan;7(1):108-15.

PMID:
17212448
[PubMed - indexed for MEDLINE]
8.

Type-II core/shell CdS/ZnSe nanocrystals: synthesis, electronic structures, and spectroscopic properties.

Ivanov SA, Piryatinski A, Nanda J, Tretiak S, Zavadil KR, Wallace WO, Werder D, Klimov VI.

J Am Chem Soc. 2007 Sep 26;129(38):11708-19. Epub 2007 Aug 30.

PMID:
17727285
[PubMed]
9.

High-efficiency carrier multiplication and ultrafast charge separation in semiconductor nanocrystals studied via time-resolved photoluminescence.

Schaller RD, Sykora M, Jeong S, Klimov VI.

J Phys Chem B. 2006 Dec 21;110(50):25332-8.

PMID:
17165979
[PubMed]
10.

Single-mode tunable laser emission in the single-exciton regime from colloidal nanocrystals.

Grivas C, Li C, Andreakou P, Wang P, Ding M, Brambilla G, Manna L, Lagoudakis P.

Nat Commun. 2013;4:2376. doi: 10.1038/ncomms3376.

PMID:
23974520
[PubMed]
Free PMC Article
11.

Effect of zero- to one-dimensional transformation on multiparticle Auger recombination in semiconductor quantum rods.

Htoon H, Hollingsworth JA, Dickerson R, Klimov VI.

Phys Rev Lett. 2003 Nov 28;91(22):227401. Epub 2003 Nov 24.

PMID:
14683270
[PubMed]
12.

Tunable magnetic exchange interactions in manganese-doped inverted core-shell ZnSe-CdSe nanocrystals.

Bussian DA, Crooker SA, Yin M, Brynda M, Efros AL, Klimov VI.

Nat Mater. 2009 Jan;8(1):35-40. doi: 10.1038/nmat2342. Epub 2008 Dec 14.

PMID:
19079242
[PubMed]
13.

Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films.

Dang C, Lee J, Breen C, Steckel JS, Coe-Sullivan S, Nurmikko A.

Nat Nanotechnol. 2012 Apr 29;7(5):335-9. doi: 10.1038/nnano.2012.61.

PMID:
22543426
[PubMed]
14.

Non-blinking semiconductor nanocrystals.

Wang X, Ren X, Kahen K, Hahn MA, Rajeswaran M, Maccagnano-Zacher S, Silcox J, Cragg GE, Efros AL, Krauss TD.

Nature. 2009 Jun 4;459(7247):686-9. doi: 10.1038/nature08072.

PMID:
19430463
[PubMed]
15.

Size-dependent trap-assisted Auger recombination in semiconductor nanocrystals.

Cohn AW, Schimpf AM, Gunthardt CE, Gamelin DR.

Nano Lett. 2013 Apr 10;13(4):1810-5. doi: 10.1021/nl400503s. Epub 2013 Mar 11.

PMID:
23464673
[PubMed - indexed for MEDLINE]
16.

Core and valence exciton formation in x-ray absorption, x-ray emission and x-ray excited optical luminescence from passivated Si nanocrystals at the Si L(2,3) edge.

Siller L, Krishnamurthy S, Kjeldgaard L, Horrocks BR, Chao Y, Houlton A, Chakraborty AK, Hunt MR.

J Phys Condens Matter. 2009 Mar 4;21(9):095005. doi: 10.1088/0953-8984/21/9/095005. Epub 2009 Jan 30.

PMID:
21817378
[PubMed]
17.

Exciton fine structure and spin relaxation in semiconductor colloidal quantum dots.

Kim J, Wong CY, Scholes GD.

Acc Chem Res. 2009 Aug 18;42(8):1037-46. doi: 10.1021/ar8002046.

PMID:
19425542
[PubMed]
18.

Multiple exciton generation and recombination in carbon nanotubes and nanocrystals.

Kanemitsu Y.

Acc Chem Res. 2013 Jun 18;46(6):1358-66. doi: 10.1021/ar300269z. Epub 2013 Feb 19.

PMID:
23421584
[PubMed]
19.

Carrier multiplication in InAs nanocrystal quantum dots with an onset defined by the energy conservation limit.

Schaller RD, Pietryga JM, Klimov VI.

Nano Lett. 2007 Nov;7(11):3469-76. Epub 2007 Oct 30.

PMID:
17967043
[PubMed - indexed for MEDLINE]
20.

Radial-position-controlled doping of CdS/ZnS core/shell nanocrystals: surface effects and position-dependent properties.

Yang Y, Chen O, Angerhofer A, Cao YC.

Chemistry. 2009;15(13):3186-97. doi: 10.1002/chem.200802295.

PMID:
19206119
[PubMed]

Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk