Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 140

1.

Expression of microRNAs is dynamically regulated during cardiomyocyte hypertrophy.

Tatsuguchi M, Seok HY, Callis TE, Thomson JM, Chen JF, Newman M, Rojas M, Hammond SM, Wang DZ.

J Mol Cell Cardiol. 2007 Jun;42(6):1137-41. Epub 2007 Apr 14.

2.

miR-150 regulates high glucose-induced cardiomyocyte hypertrophy by targeting the transcriptional co-activator p300.

Duan Y, Zhou B, Su H, Liu Y, Du C.

Exp Cell Res. 2013 Feb 1;319(3):173-84. doi: 10.1016/j.yexcr.2012.11.015. Epub 2012 Dec 2.

PMID:
23211718
3.

Attenuation of microRNA-22 derepressed PTEN to effectively protect rat cardiomyocytes from hypertrophy.

Xu XD, Song XW, Li Q, Wang GK, Jing Q, Qin YW.

J Cell Physiol. 2012 Apr;227(4):1391-8. doi: 10.1002/jcp.22852.

PMID:
21618527
4.

MicroRNAs are dynamically regulated in hypertrophic hearts, and miR-199a is essential for the maintenance of cell size in cardiomyocytes.

Song XW, Li Q, Lin L, Wang XC, Li DF, Wang GK, Ren AJ, Wang YR, Qin YW, Yuan WJ, Jing Q.

J Cell Physiol. 2010 Nov;225(2):437-43. doi: 10.1002/jcp.22217.

PMID:
20458739
5.

miR-206 Mediates YAP-Induced Cardiac Hypertrophy and Survival.

Yang Y, Del Re DP, Nakano N, Sciarretta S, Zhai P, Park J, Sayed D, Shirakabe A, Matsushima S, Park Y, Tian B, Abdellatif M, Sadoshima J.

Circ Res. 2015 Oct 23;117(10):891-904. doi: 10.1161/CIRCRESAHA.115.306624. Epub 2015 Sep 2.

PMID:
26333362
6.

Reciprocal regulation of miR-23a and lysophosphatidic acid receptor signaling in cardiomyocyte hypertrophy.

Yang J, Nie Y, Wang F, Hou J, Cong X, Hu S, Chen X.

Biochim Biophys Acta. 2013 Aug;1831(8):1386-94. doi: 10.1016/j.bbalip.2013.05.005. Epub 2013 May 25.

PMID:
23711961
7.

MicroRNA-22 regulates cardiac hypertrophy and remodeling in response to stress.

Huang ZP, Chen J, Seok HY, Zhang Z, Kataoka M, Hu X, Wang DZ.

Circ Res. 2013 Apr 26;112(9):1234-43. doi: 10.1161/CIRCRESAHA.112.300682. Epub 2013 Mar 22.

8.

MicroRNAs are aberrantly expressed in hypertrophic heart: do they play a role in cardiac hypertrophy?

Cheng Y, Ji R, Yue J, Yang J, Liu X, Chen H, Dean DB, Zhang C.

Am J Pathol. 2007 Jun;170(6):1831-40.

9.

A phenotypic screen to identify hypertrophy-modulating microRNAs in primary cardiomyocytes.

Jentzsch C, Leierseder S, Loyer X, Flohrsch├╝tz I, Sassi Y, Hartmann D, Thum T, Laggerbauer B, Engelhardt S.

J Mol Cell Cardiol. 2012 Jan;52(1):13-20. doi: 10.1016/j.yjmcc.2011.07.010. Epub 2011 Jul 23.

PMID:
21801730
10.

Attenuation of microRNA-16 derepresses the cyclins D1, D2 and E1 to provoke cardiomyocyte hypertrophy.

Huang S, Zou X, Zhu JN, Fu YH, Lin QX, Liang YY, Deng CY, Kuang SJ, Zhang MZ, Liao YL, Zheng XL, Yu XY, Shan ZX.

J Cell Mol Med. 2015 Mar;19(3):608-19. doi: 10.1111/jcmm.12445. Epub 2015 Jan 13.

11.

miR-410 and miR-495 Are Dynamically Regulated in Diverse Cardiomyopathies and Their Inhibition Attenuates Pathological Hypertrophy.

Clark AL, Maruyama S, Sano S, Accorsi A, Girgenrath M, Walsh K, Naya FJ.

PLoS One. 2016 Mar 21;11(3):e0151515. doi: 10.1371/journal.pone.0151515. eCollection 2016.

12.

╬▓-adrenoceptor regulates miRNA expression in rat heart.

Hou Y, Sun Y, Shan H, Li X, Zhang M, Zhou X, Xing S, Sun H, Chu W, Qiao G, Lu Y.

Med Sci Monit. 2012 Aug;18(8):BR309-314.

13.

The miR-19a/b family positively regulates cardiomyocyte hypertrophy by targeting atrogin-1 and MuRF-1.

Song DW, Ryu JY, Kim JO, Kwon EJ, Kim do H.

Biochem J. 2014 Jan 1;457(1):151-62. doi: 10.1042/BJ20130833.

PMID:
24117217
14.

miR-30a downregulation aggravates pressure overload-induced cardiomyocyte hypertrophy.

Yin X, Peng C, Ning W, Li C, Ren Z, Zhang J, Gao H, Zhao K.

Mol Cell Biochem. 2013 Jul;379(1-2):1-6. doi: 10.1007/s11010-012-1552-z. Epub 2013 May 10.

PMID:
23660952
15.

The miRNA-212/132 family regulates both cardiac hypertrophy and cardiomyocyte autophagy.

Ucar A, Gupta SK, Fiedler J, Erikci E, Kardasinski M, Batkai S, Dangwal S, Kumarswamy R, Bang C, Holzmann A, Remke J, Caprio M, Jentzsch C, Engelhardt S, Geisendorf S, Glas C, Hofmann TG, Nessling M, Richter K, Schiffer M, Carrier L, Napp LC, Bauersachs J, Chowdhury K, Thum T.

Nat Commun. 2012;3:1078. doi: 10.1038/ncomms2090.

16.

MiR-30-regulated autophagy mediates angiotensin II-induced myocardial hypertrophy.

Pan W, Zhong Y, Cheng C, Liu B, Wang L, Li A, Xiong L, Liu S.

PLoS One. 2013;8(1):e53950. doi: 10.1371/journal.pone.0053950. Epub 2013 Jan 9.

17.

MicroRNA-1 and microRNA-133a expression are decreased during skeletal muscle hypertrophy.

McCarthy JJ, Esser KA.

J Appl Physiol (1985). 2007 Jan;102(1):306-13. Epub 2006 Sep 28.

18.

Attenuation of microRNA-1 derepresses the cytoskeleton regulatory protein twinfilin-1 to provoke cardiac hypertrophy.

Li Q, Song XW, Zou J, Wang GK, Kremneva E, Li XQ, Zhu N, Sun T, Lappalainen P, Yuan WJ, Qin YW, Jing Q.

J Cell Sci. 2010 Jul 15;123(Pt 14):2444-52. doi: 10.1242/jcs.067165. Epub 2010 Jun 22. Erratum in: J Cell Sci. 2010 Aug 1;123(Pt 15):2680.

19.

MicroRNA-27a regulates beta cardiac myosin heavy chain gene expression by targeting thyroid hormone receptor beta1 in neonatal rat ventricular myocytes.

Nishi H, Ono K, Horie T, Nagao K, Kinoshita M, Kuwabara Y, Watanabe S, Takaya T, Tamaki Y, Takanabe-Mori R, Wada H, Hasegawa K, Iwanaga Y, Kawamura T, Kita T, Kimura T.

Mol Cell Biol. 2011 Feb;31(4):744-55. doi: 10.1128/MCB.00581-10. Epub 2010 Dec 13.

20.

Loss of MicroRNA-155 protects the heart from pathological cardiac hypertrophy.

Seok HY, Chen J, Kataoka M, Huang ZP, Ding J, Yan J, Hu X, Wang DZ.

Circ Res. 2014 May 9;114(10):1585-95. doi: 10.1161/CIRCRESAHA.114.303784. Epub 2014 Mar 21.

Items per page

Supplemental Content

Write to the Help Desk