Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 152

Similar articles for PubMed (Select 17476384)

1.

Microfluidic pressure sensing using trapped air compression.

Srivastava N, Burns MA.

Lab Chip. 2007 May;7(5):633-7. Epub 2007 Apr 4.

2.

Highly stable liquid metal-based pressure sensor integrated with a microfluidic channel.

Jung T, Yang S.

Sensors (Basel). 2015 May 21;15(5):11823-35. doi: 10.3390/s150511823.

3.

Single-use thermoplastic microfluidic burst valves enabling on-chip reagent storage.

Rahmanian OD, DeVoe DL.

Microfluid Nanofluidics. 2015 May 1;18(5-6):1045-1053.

PMID:
25972774
4.

Development of a passive liquid valve (PLV) utilizing a pressure equilibrium phenomenon on the centrifugal microfluidic platform.

Al-Faqheri W, Ibrahim F, Thio TH, Bahari N, Arof H, Rothan HA, Yusof R, Madou M.

Sensors (Basel). 2015 Feb 25;15(3):4658-76. doi: 10.3390/s150304658.

5.

Phaseguide-assisted blood separation microfluidic device for point-of-care applications.

Xu L, Lee H, Brasil Pinheiro MV, Schneider P, Jetta D, Oh KW.

Biomicrofluidics. 2015 Jan 21;9(1):014106. doi: 10.1063/1.4906458. eCollection 2015 Jan.

PMID:
25713688
6.

A simple analytical method to estimate all exit parameters of a cross-flow air dehumidifier using liquid desiccant.

Bassuoni MM.

J Adv Res. 2014 Mar;5(2):175-82. doi: 10.1016/j.jare.2013.02.002. Epub 2013 Mar 30.

7.

Effect of a dual inlet channel on cell loading in microfluidics.

Yun H, Kim K, Lee WG.

Biomicrofluidics. 2014 Nov 14;8(6):066501. doi: 10.1063/1.4901929. eCollection 2014 Nov.

PMID:
25553201
8.

Microfluidic vapor-diffusion barrier for pressure reduction in fully closed PCR modules.

Czilwik G, Schwarz I, Keller M, Wadle S, Zehnle S, von Stetten F, Mark D, Zengerle R, Paust N.

Lab Chip. 2015 Feb 21;15(4):1084-91. doi: 10.1039/c4lc01115e.

PMID:
25524461
9.

Microfluidic sterilization.

Zhang R, Huang J, Xie F, Wang B, Chu M, Wang Y, Li H, Wang W, Zhang H, Wu W, Li Z.

Biomicrofluidics. 2014 Jun 30;8(3):034119. doi: 10.1063/1.4882776. eCollection 2014 May.

10.

Collapsing granular beds: the role of interstitial air.

Homan T, Gjaltema C, van der Meer D.

Phys Rev E Stat Nonlin Soft Matter Phys. 2014 May;89(5):052204. Epub 2014 May 9.

PMID:
25353784
11.

Towards plug and play filling of microfluidic devices by utilizing networks of capillary stop valves.

Hagmeyer B, Zechnall F, Stelzle M.

Biomicrofluidics. 2014 Sep 19;8(5):056501. doi: 10.1063/1.4896063. eCollection 2014 Sep.

PMID:
25332747
12.

Creation of a transient vapor nanogap between two fluidic reservoirs for single molecule manipulation.

Polonsky S, Balagurusamy VS, Ott JA.

Rev Sci Instrum. 2014 Aug;85(8):084301. doi: 10.1063/1.4890206.

PMID:
25173286
13.

Finger-powered microfluidic systems using multilayer soft lithography and injection molding processes.

Iwai K, Shih KC, Lin X, Brubaker TA, Sochol RD, Lin L.

Lab Chip. 2014 Oct 7;14(19):3790-9. doi: 10.1039/c4lc00500g.

PMID:
25102160
14.

Acoustic radiation forces at liquid interfaces impact the performance of acoustophoresis.

Deshmukh S, Brzozka Z, Laurell T, Augustsson P.

Lab Chip. 2014 Sep 7;14(17):3394-400. doi: 10.1039/c4lc00572d.

PMID:
25007385
15.

Foam drainage control using thermocapillary stress in a two-dimensional microchamber.

Miralles V, Selva B, Cantat I, Jullien MC.

Phys Rev Lett. 2014 Jun 13;112(23):238302. Epub 2014 Jun 10.

PMID:
24972233
16.

Real-time machine vision FPGA implementation for microfluidic monitoring on Lab-on-Chips.

Sotiropoulou CL, Voudouris L, Gentsos C, Demiris AM, Vassiliadis N, Nikolaidis S.

IEEE Trans Biomed Circuits Syst. 2014 Apr;8(2):268-77. doi: 10.1109/TBCAS.2013.2260338.

PMID:
24875286
17.

Caterpillar locomotion-inspired valveless pneumatic micropump using a single teardrop-shaped elastomeric membrane.

So H, Pisano AP, Seo YH.

Lab Chip. 2014 Jul 7;14(13):2240-8. doi: 10.1039/c3lc51298c.

PMID:
24812661
18.

Luminescent measurement systems for the investigation of a scramjet inlet-isolator.

Idris AC, Saad MR, Zare-Behtash H, Kontis K.

Sensors (Basel). 2014 Apr 9;14(4):6606-32. doi: 10.3390/s140406606.

19.

Monolithic chip system with a microfluidic channel for in situ electron microscopy of liquids.

Jensen E, Burrows A, Mølhave K.

Microsc Microanal. 2014 Apr;20(2):445-51. doi: 10.1017/S1431927614000300. Epub 2014 Apr 9.

PMID:
24717178
20.

Structural shimming for high-resolution nuclear magnetic resonance spectroscopy in lab-on-a-chip devices.

Ryan H, Smith A, Utz M.

Lab Chip. 2014 May 21;14(10):1678-85. doi: 10.1039/c3lc51431e. Epub 2014 Mar 24.

PMID:
24658666
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk