Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 81

Similar articles for PubMed (Select 17453047)

1.

Genome-wide transcriptional plasticity underlies cellular adaptation to novel challenge.

Stern S, Dror T, Stolovicki E, Brenner N, Braun E.

Mol Syst Biol. 2007;3:106. Epub 2007 Apr 24.

2.

Cellular plasticity enables adaptation to unforeseen cell-cycle rewiring challenges.

Katzir Y, Stolovicki E, Stern S, Braun E.

PLoS One. 2012;7(9):e45184. doi: 10.1371/journal.pone.0045184. Epub 2012 Sep 18.

3.

Multiple genomic changes associated with reorganization of gene regulation and adaptation in yeast.

David L, Ben-Harosh Y, Stolovicki E, Moore LS, Nguyen M, Tamse R, Dean J, Mancera E, Steinmetz LM, Braun E.

Mol Biol Evol. 2013 Jul;30(7):1514-26. doi: 10.1093/molbev/mst071. Epub 2013 Apr 14.

4.

Synthetic gene recruitment reveals adaptive reprogramming of gene regulation in yeast.

Stolovicki E, Dror T, Brenner N, Braun E.

Genetics. 2006 May;173(1):75-85. Epub 2006 Mar 1.

5.

Inherited adaptation of genome-rewired cells in response to a challenging environment.

David L, Stolovicki E, Haziz E, Braun E.

HFSP J. 2010 Jun;4(3-4):131-41. doi: 10.2976/1.3353782. Epub 2010 Apr 2.

6.

Transcriptional regulatory networks in Saccharomyces cerevisiae.

Lee TI, Rinaldi NJ, Robert F, Odom DT, Bar-Joseph Z, Gerber GK, Hannett NM, Harbison CT, Thompson CM, Simon I, Zeitlinger J, Jennings EG, Murray HL, Gordon DB, Ren B, Wyrick JJ, Tagne JB, Volkert TL, Fraenkel E, Gifford DK, Young RA.

Science. 2002 Oct 25;298(5594):799-804.

7.

Different levels of catabolite repression optimize growth in stable and variable environments.

New AM, Cerulus B, Govers SK, Perez-Samper G, Zhu B, Boogmans S, Xavier JB, Verstrepen KJ.

PLoS Biol. 2014 Jan;12(1):e1001764. doi: 10.1371/journal.pbio.1001764. Epub 2014 Jan 14.

8.
10.

Genome-wide scan reveals that genetic variation for transcriptional plasticity in yeast is biased towards multi-copy and dispensable genes.

Landry CR, Oh J, Hartl DL, Cavalieri D.

Gene. 2006 Feb 1;366(2):343-51. Epub 2006 Jan 20.

PMID:
16427747
11.
12.

Genome-wide location and function of DNA binding proteins.

Ren B, Robert F, Wyrick JJ, Aparicio O, Jennings EG, Simon I, Zeitlinger J, Schreiber J, Hannett N, Kanin E, Volkert TL, Wilson CJ, Bell SP, Young RA.

Science. 2000 Dec 22;290(5500):2306-9.

13.

Characterization of NGG1, a novel yeast gene required for glucose repression of GAL4p-regulated transcription.

Brandl CJ, Furlanetto AM, Martens JA, Hamilton KS.

EMBO J. 1993 Dec 15;12(13):5255-65.

14.

Quantitative inference of dynamic regulatory pathways via microarray data.

Chang WC, Li CW, Chen BS.

BMC Bioinformatics. 2005 Mar 7;6:44.

15.
16.
17.

Anaerobicity prepares Saccharomyces cerevisiae cells for faster adaptation to osmotic shock.

Krantz M, Nordlander B, Valadi H, Johansson M, Gustafsson L, Hohmann S.

Eukaryot Cell. 2004 Dec;3(6):1381-90.

18.

Transcriptional profiling of Saccharomyces cerevisiae cells under adhesion-inducing conditions.

Kleinschmidt M, Grundmann O, Blüthgen N, Mösch HU, Braus GH.

Mol Genet Genomics. 2005 Jun;273(5):382-93. Epub 2005 Apr 21.

PMID:
15843968
19.
20.

Activator control of nucleosome occupancy in activation and repression of transcription.

Bryant GO, Prabhu V, Floer M, Wang X, Spagna D, Schreiber D, Ptashne M.

PLoS Biol. 2008 Dec 23;6(12):2928-39. doi: 10.1371/journal.pbio.0060317.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk