Format
Items per page
Sort by

Send to:

Choose Destination

Links from PubMed

Items: 1 to 20 of 216

1.

Parallel activation of mitochondrial oxidative metabolism with increased cardiac energy expenditure is not dependent on fatty acid oxidation in pigs.

Zhou L, Cabrera ME, Huang H, Yuan CL, Monika DK, Sharma N, Bian F, Stanley WC.

J Physiol. 2007 Mar 15;579(Pt 3):811-21. Epub 2006 Dec 21.

2.

Regulation of myocardial substrate metabolism during increased energy expenditure: insights from computational studies.

Zhou L, Cabrera ME, Okere IC, Sharma N, Stanley WC.

Am J Physiol Heart Circ Physiol. 2006 Sep;291(3):H1036-46. Epub 2006 Apr 7.

3.

Regulation of pyruvate dehydrogenase activity and citric acid cycle intermediates during high cardiac power generation.

Sharma N, Okere IC, Brunengraber DZ, McElfresh TA, King KL, Sterk JP, Huang H, Chandler MP, Stanley WC.

J Physiol. 2005 Jan 15;562(Pt 2):593-603. Epub 2004 Nov 18.

4.

Mechanistic model of myocardial energy metabolism under normal and ischemic conditions.

Salem JE, Saidel GM, Stanley WC, Cabrera ME.

Ann Biomed Eng. 2002 Feb;30(2):202-16.

PMID:
11962772
5.

Limited transfer of cytosolic NADH into mitochondria at high cardiac workload.

O'Donnell JM, Kudej RK, LaNoue KF, Vatner SF, Lewandowski ED.

Am J Physiol Heart Circ Physiol. 2004 Jun;286(6):H2237-42. Epub 2004 Jan 29.

6.

Regulation of lactate production at the onset of ischaemia is independent of mitochondrial NADH/NAD+: insights from in silico studies.

Zhou L, Stanley WC, Saidel GM, Yu X, Cabrera ME.

J Physiol. 2005 Dec 15;569(Pt 3):925-37. Epub 2005 Oct 13.

7.

Control of oxidative metabolism in volume-overloaded rat hearts: effect of propionyl-L-carnitine.

El Alaoui-Talibi Z, Guendouz A, Moravec M, Moravec J.

Am J Physiol. 1997 Apr;272(4 Pt 2):H1615-24.

PMID:
9139943
8.

Metabolic response to an acute jump in cardiac workload: effects on malonyl-CoA, mechanical efficiency, and fatty acid oxidation.

Zhou L, Huang H, Yuan CL, Keung W, Lopaschuk GD, Stanley WC.

Am J Physiol Heart Circ Physiol. 2008 Feb;294(2):H954-60. Epub 2007 Dec 14.

9.

Respiratory control in heart muscle during fatty acid oxidation. Energy state or substrate-level regulation by Ca2+?

Vuorinen KH, Ala-Rämi A, Yan Y, Ingman P, Hassinen IE.

J Mol Cell Cardiol. 1995 Aug;27(8):1581-91.

PMID:
8523421
10.

Effect of substrate on mitochondrial NADH, cytosolic redox state, and phosphorylated compounds in isolated hearts.

Scholz TD, Laughlin MR, Balaban RS, Kupriyanov VV, Heineman FW.

Am J Physiol. 1995 Jan;268(1 Pt 2):H82-91.

PMID:
7840306
11.

Dobutamine enhances both contractile function and energy reserves in hypoperfused canine right ventricle.

Yi KD, Downey HF, Bian X, Fu M, Mallet RT.

Am J Physiol Heart Circ Physiol. 2000 Dec;279(6):H2975-85.

12.

Cardiac insulin-resistance and decreased mitochondrial energy production precede the development of systolic heart failure after pressure-overload hypertrophy.

Zhang L, Jaswal JS, Ussher JR, Sankaralingam S, Wagg C, Zaugg M, Lopaschuk GD.

Circ Heart Fail. 2013 Sep 1;6(5):1039-48. doi: 10.1161/CIRCHEARTFAILURE.112.000228. Epub 2013 Jul 16.

13.

Role of NADH/NAD+ transport activity and glycogen store on skeletal muscle energy metabolism during exercise: in silico studies.

Li Y, Dash RK, Kim J, Saidel GM, Cabrera ME.

Am J Physiol Cell Physiol. 2009 Jan;296(1):C25-46. doi: 10.1152/ajpcell.00094.2008. Epub 2008 Oct 1.

14.

Mechanistic model of cardiac energy metabolism predicts localization of glycolysis to cytosolic subdomain during ischemia.

Zhou L, Salem JE, Saidel GM, Stanley WC, Cabrera ME.

Am J Physiol Heart Circ Physiol. 2005 May;288(5):H2400-11. Epub 2005 Jan 28.

15.

Increased nonoxidative glycolysis despite continued fatty acid uptake during demand-induced myocardial ischemia.

Chandler MP, Huang H, McElfresh TA, Stanley WC.

Am J Physiol Heart Circ Physiol. 2002 May;282(5):H1871-8.

16.

Fatty acid oxidation in the heart.

Grynberg A, Demaison L.

J Cardiovasc Pharmacol. 1996;28 Suppl 1:S11-7. Review.

PMID:
8891866
17.

L-propionylcarnitine does not affect myocardial metabolic or functional response to chronotropic and inotropic stimulation after repetitive ischemia in anesthetized pigs.

Duncker DJ, Sassen LM, Bartels GL, van Meegen JR, McFalls EO, Krams R, Bezstarosti K, Lamers JM, Verdouw PD.

J Cardiovasc Pharmacol. 1993 Sep;22(3):488-98.

PMID:
7504143
18.

Myocardial high-energy phosphate and substrate metabolism in swine with moderate left ventricular hypertrophy.

Massie BM, Schaefer S, Garcia J, McKirnan MD, Schwartz GG, Wisneski JA, Weiner MW, White FC.

Circulation. 1995 Mar 15;91(6):1814-23.

19.
20.

Computational studies of the effects of myocardial blood flow reductions on cardiac metabolism.

Salem JE, Stanley WC, Cabrera ME.

Biomed Eng Online. 2004 Jun 2;3(1):15.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk