Format
Items per page
Sort by

Send to:

Choose Destination

Links from PubMed

Items: 1 to 20 of 202

1.

Far field thermal radiation through nanoholes and apertures.

Prasher R.

Nano Lett. 2006 Sep;6(9):2135-9.

PMID:
16968039
2.

Three-dimensional mapping of the light intensity transmitted through nanoapertures.

Amarie D, Rawlinson ND, Schaich WL, Dragnea B, Jacobson SC.

Nano Lett. 2005 Jul;5(7):1227-30.

PMID:
16178215
3.

The exact electromagnetic field description of photon emission, absorption, and radiation pattern. II.

Grimes DM, Grimes CA.

J Nanosci Nanotechnol. 2002 Oct;2(5):557-80.

PMID:
12908294
4.

Basis and lattice polarization mechanisms for light transmission through nanohole arrays in a metal film.

Gordon R, Hughes M, Leathem B, Kavanagh KL, Brolo AG.

Nano Lett. 2005 Jul;5(7):1243-6.

PMID:
16178218
5.

Effect of nanoholes on the vortex core fermion spectrum and heat transport in p-wave superconductors.

Rosenstein B, Shapiro I, Shapiro BY.

J Phys Condens Matter. 2013 Feb 20;25(7):075701. doi: 10.1088/0953-8984/25/7/075701. Epub 2013 Jan 17.

PMID:
23327830
6.

Mapping the plasmon resonances of metallic nanoantennas.

Bryant GW, GarcĂ­a de Abajo FJ, Aizpurua J.

Nano Lett. 2008 Feb;8(2):631-6. doi: 10.1021/nl073042v. Epub 2008 Jan 12.

PMID:
18189444
7.

Thermal conductivity of diamond nanorods: Molecular simulation and scaling relations.

Padgett CW, Shenderova O, Brenner DW.

Nano Lett. 2006 Aug;6(8):1827-31.

PMID:
16895381
8.

Electric and magnetic surface polariton mediated near-field radiative heat transfer between metamaterials made of silicon carbide particles.

Francoeur M, Basu S, Petersen SJ.

Opt Express. 2011 Sep 26;19(20):18774-88. doi: 10.1364/OE.19.018774.

PMID:
21996819
9.

Optical and magnetic properties of hexagonal arrays of subwavelength holes in optically thin cobalt films.

Ctistis G, Papaioannou E, Patoka P, Gutek J, Fumagalli P, Giersig M.

Nano Lett. 2009 Jan;9(1):1-6. doi: 10.1021/nl801811t.

PMID:
19072720
10.

An analytical model for calculating microdosimetric distributions from heavy ions in nanometer site targets.

Czopyk L, Olko P.

Radiat Prot Dosimetry. 2006;122(1-4):36-40. Epub 2007 Mar 10.

PMID:
17351268
11.

Enhanced flow in smooth single-file channel.

Roy Majumder S, Choudhury N, Ghosh SK.

J Chem Phys. 2007 Aug 7;127(5):054706.

PMID:
17688356
12.

Formation of ion clusters by low-energy electrons in nanometric targets: experiment and Monte Carlo simulation.

Bantsar A, Grosswendt B, Pszona S.

Radiat Prot Dosimetry. 2006;122(1-4):82-5. Epub 2007 Jan 24.

PMID:
17251251
13.

Reversible polarization control of single photon emission.

Moerland RJ, Taminiau TH, Novotny L, van Hulst NF, Kuipers L.

Nano Lett. 2008 Feb;8(2):606-10. doi: 10.1021/nl073026y. Epub 2008 Jan 15.

PMID:
18193913
14.

Optical properties of a wrinkled nanomembrane with embedded quantum well.

Mei Y, Kiravittaya S, Benyoucef M, Thurmer DJ, Zander T, Deneke C, Cavallo F, Rastelli A, Schmidt OG.

Nano Lett. 2007 Jun;7(6):1676-9. Epub 2007 Apr 27.

PMID:
17461606
15.

Development of a quantum molecular dynamic (QMD) model to describe fission and fragment production.

Polanski A, Petrochenkov S, Uzhinsky V.

Radiat Prot Dosimetry. 2005;116(1-4 Pt 2):582-4.

PMID:
16604704
16.

Transformation thermodynamics: cloaking and concentrating heat flux.

Guenneau S, Amra C, Veynante D.

Opt Express. 2012 Mar 26;20(7):8207-18. doi: 10.1364/OE.20.008207.

PMID:
22453491
17.

Thermal analysis of titanium drive-in target for D-D neutron generation.

Jung NS, Kim IJ, Kim SJ, Choi HD.

Appl Radiat Isot. 2010 Apr-May;68(4-5):566-9. doi: 10.1016/j.apradiso.2009.09.008. Epub 2009 Sep 15.

PMID:
19819152
18.

Thermal averages in a quantum point contact with a single coherent wave packet.

Heller EJ, Aidala KE, LeRoy BJ, Bleszynski AC, Kalben A, Westervelt RM, Maranowski KD, Gossard AC.

Nano Lett. 2005 Jul;5(7):1285-92.

PMID:
16178225
19.

Characterization of radiant emitters used in food processing.

Lloyd BJ, Farkas BE, Keener KM.

J Microw Power Electromagn Energy. 2003;38(4):213-24.

PMID:
15323107
20.

Visible and near-infrared radiative properties of vertically aligned multi-walled carbon nanotubes.

Wang XJ, Flicker JD, Lee BJ, Ready WJ, Zhang ZM.

Nanotechnology. 2009 May 27;20(21):215704. doi: 10.1088/0957-4484/20/21/215704. Epub 2009 May 6.

PMID:
19423943
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk