Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 95

Similar articles for PubMed (Select 16408037)

1.

Inhibiting transcription of chromosomal DNA with antigene peptide nucleic acids.

Janowski BA, Kaihatsu K, Huffman KE, Schwartz JC, Ram R, Hardy D, Mendelson CR, Corey DR.

Nat Chem Biol. 2005 Sep;1(4):210-5. Epub 2005 Jul 31.

PMID:
16408037
2.

Inhibiting transcription of chromosomal DNA using antigene RNAs.

Janowski BA, Corey DR.

Nucleic Acids Symp Ser (Oxf). 2005;(49):367-8.

3.
4.

Inhibiting gene expression at transcription start sites in chromosomal DNA with antigene RNAs.

Janowski BA, Huffman KE, Schwartz JC, Ram R, Hardy D, Shames DS, Minna JD, Corey DR.

Nat Chem Biol. 2005 Sep;1(4):216-22. Epub 2005 Jul 31.

PMID:
16408038
5.
6.

Antigene leaps forward through an open door.

Armitage BA.

Nat Chem Biol. 2005 Sep;1(4):185-6. No abstract available.

PMID:
16408028
7.

Recognition of chromosomal DNA by PNAs.

Kaihatsu K, Janowski BA, Corey DR.

Chem Biol. 2004 Jun;11(6):749-58. Review.

PMID:
15217608
8.

Efficient and isoform-selective inhibition of cellular gene expression by peptide nucleic acids.

Liu Y, Braasch DA, Nulf CJ, Corey DR.

Biochemistry. 2004 Feb 24;43(7):1921-7.

PMID:
14967032
9.
10.
11.

Inhibition of gene expression inside cells by peptide nucleic acids: effect of mRNA target sequence, mismatched bases, and PNA length.

Doyle DF, Braasch DA, Simmons CG, Janowski BA, Corey DR.

Biochemistry. 2001 Jan 9;40(1):53-64.

PMID:
11141056
12.

Inhibiting gene expression with locked nucleic acids (LNAs) that target chromosomal DNA.

Beane RL, Ram R, Gabillet S, Arar K, Monia BP, Corey DR.

Biochemistry. 2007 Jun 26;46(25):7572-80. Epub 2007 May 31.

13.

Involvement of AGO1 and AGO2 in mammalian transcriptional silencing.

Janowski BA, Huffman KE, Schwartz JC, Ram R, Nordsell R, Shames DS, Minna JD, Corey DR.

Nat Struct Mol Biol. 2006 Sep;13(9):787-92. Epub 2006 Aug 27.

PMID:
16936728
14.

Two distinct estrogen-regulated promoters generate transcripts encoding the two functionally different human progesterone receptor forms A and B.

Kastner P, Krust A, Turcotte B, Stropp U, Tora L, Gronemeyer H, Chambon P.

EMBO J. 1990 May;9(5):1603-14.

15.

The use of peptide nucleic acids for in situ identification of human chromosomes.

Pellestor F, Paulasova P, Macek M, Hamamah S.

J Histochem Cytochem. 2005 Mar;53(3):395-400. Review.

PMID:
15750028
16.

Peptide nucleic acid-DNA decoy chimeras targeting NF-kappaB transcription factors: Induction of apoptosis in human primary osteoclasts.

Penolazzi L, Borgatti M, Lambertini E, Mischiati C, Finotti A, Romanelli A, Saviano M, Pedone C, Piva R, Gambari R.

Int J Mol Med. 2004 Aug;14(2):145-52.

PMID:
15254756
18.

Computational procedures to explain the different biological activity of DNA/DNA, DNA/PNA and PNA/PNA hybrid molecules mimicking NF-kappaB binding sites.

Saviano M, Romanelli A, Bucci E, Pedone C, Mischiati C, Bianchi N, Feriotto G, Borgatti M, Gambari R.

J Biomol Struct Dyn. 2000 Dec;18(3):353-62.

PMID:
11149512
19.

Peptide-nucleic acids (PNAs): a tool for the development of gene expression modifiers.

Gambari R.

Curr Pharm Des. 2001 Nov;7(17):1839-62. Review.

PMID:
11562312
20.

Modulation of gene expression by antisense and antigene oligodeoxynucleotides and small interfering RNA.

Mahato RI, Cheng K, Guntaka RV.

Expert Opin Drug Deliv. 2005 Jan;2(1):3-28. Review.

PMID:
16296732
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk