Format
Items per page
Sort by

Send to:

Choose Destination

Links from PubMed

Items: 1 to 20 of 74

1.

Development of an Adhesion Assay and Characterization of an Adhesion-Deficient Mutant of Pseudomonas fluorescens.

Deflaun MF, Tanzer AS, McAteer AL, Marshall B, Levy SB.

Appl Environ Microbiol. 1990 Jan;56(1):112-9.

2.

Tn5 Insertion Mutants of Pseudomonas fluorescens Defective in Adhesion to Soil and Seeds.

Deflaun MF, Marshall BM, Kulle EP, Levy SB.

Appl Environ Microbiol. 1994 Jul;60(7):2637-42.

3.

Requirement of polyphosphate by Pseudomonas fluorescens Pf0-1 for competitive fitness and heat tolerance in laboratory media and sterile soil.

Silby MW, Nicoll JS, Levy SB.

Appl Environ Microbiol. 2009 Jun;75(12):3872-81. doi: 10.1128/AEM.00017-09. Epub 2009 Apr 24.

4.
5.

Survival of rifampin-resistant mutants of Pseudomonas fluorescens and Pseudomonas putida in soil systems.

Compeau G, Al-Achi BJ, Platsouka E, Levy SB.

Appl Environ Microbiol. 1988 Oct;54(10):2432-8.

6.

Transposon Tn5 mutagenesis of pseudomonas fluorescens to isolate mutants deficient in antibacterial activity.

Rajendran N, Jahn D, Jayaraman K, Marahiel MA.

FEMS Microbiol Lett. 1994 Jan 15;115(2-3):191-6.

PMID:
8138133
7.

The adnA transcriptional factor affects persistence and spread of Pseudomonas fluorescens under natural field conditions.

Marshall B, Robleto EA, Wetzler R, Kulle P, Casaz P, Levy SB.

Appl Environ Microbiol. 2001 Feb;67(2):852-7.

8.
9.

Gnotobiotic system for studying rhizosphere colonization by plant growth-promoting Pseudomonas bacteria.

Simons M, van der Bij AJ, Brand I, de Weger LA, Wijffelman CA, Lugtenberg BJ.

Mol Plant Microbe Interact. 1996 Sep;9(7):600-7.

PMID:
8810075
10.
11.

Colonization strategies of Pseudomonas fluorescens Pf0-1: activation of soil-specific genes important for diverse and specific environments.

Varivarn K, Champa LA, Silby MW, Robleto EA.

BMC Microbiol. 2013 Apr 27;13:92. doi: 10.1186/1471-2180-13-92.

12.

Fitness in soil and rhizosphere of Pseudomonas fluorescens C7R12 compared with a C7R12 mutant affected in pyoverdine synthesis and uptake.

Mirleau P, Delorme S, Philippot L, Meyer J, Mazurier S, Lemanceau P.

FEMS Microbiol Ecol. 2000 Oct 1;34(1):35-44.

13.

Agrobacterium rhizogenes mutants that fail to bind to plant cells.

Crews JL, Colby S, Matthysse AG.

J Bacteriol. 1990 Nov;172(11):6182-8.

14.

Enumeration of Tn5 mutant bacteria in soil by using a most- probable-number-DNA hybridization procedure and antibiotic resistance.

Fredrickson JK, Bezdicek DF, Brockman FJ, Li SW.

Appl Environ Microbiol. 1988 Feb;54(2):446-53.

15.
16.

Recombineering and stable integration of the Pseudomonas syringae pv. syringae 61 hrp/hrc cluster into the genome of the soil bacterium Pseudomonas fluorescens Pf0-1.

Thomas WJ, Thireault CA, Kimbrel JA, Chang JH.

Plant J. 2009 Dec;60(5):919-28. doi: 10.1111/j.1365-313X.2009.03998.x. Epub 2009 Aug 13.

PMID:
19682294
17.

Role of copper resistance in competitive survival of Pseudomonas fluorescens in soil.

Yang CH, Menge JA, Cooksey DA.

Appl Environ Microbiol. 1993 Feb;59(2):580-4.

18.

The effect of phylogenetically different bacteria on the fitness of Pseudomonas fluorescens in sand microcosms.

Tyc O, Wolf AB, Garbeva P.

PLoS One. 2015 Mar 16;10(3):e0119838. doi: 10.1371/journal.pone.0119838. eCollection 2015.

19.
20.

Isolation and Characterization of a Competition-Defective Bradyrhizobium japonicum Mutant.

Bhagwat AA, Tully RE, Keister DL.

Appl Environ Microbiol. 1991 Dec;57(12):3496-501.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk