Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 160

1.

Conducting polymer electrochemical switching as an easy means for designing active plasmonic devices.

Leroux YR, Lacroix JC, Chane-Ching KI, Fave C, Félidj N, Lévi G, Aubard J, Krenn JR, Hohenau A.

J Am Chem Soc. 2005 Nov 23;127(46):16022-3.

PMID:
16287278
[PubMed]
2.

Active plasmonic devices with anisotropic optical response: a step toward active polarizer.

Leroux Y, Lacroix JC, Fave C, Stockhausen V, Félidj N, Grand J, Hohenau A, Krenn JR.

Nano Lett. 2009 May;9(5):2144-8. doi: 10.1021/nl900695j.

PMID:
19361167
[PubMed]
3.

Giant plasmon resonance shift using poly(3,4-ethylenedioxythiophene) electrochemical switching.

Stockhausen V, Martin P, Ghilane J, Leroux Y, Randriamahazaka H, Grand J, Felidj N, Lacroix JC.

J Am Chem Soc. 2010 Aug 4;132(30):10224-6. doi: 10.1021/ja103337d.

PMID:
20662496
[PubMed]
4.

Active molecular plasmonics: controlling plasmon resonances with molecular switches.

Zheng YB, Yang YW, Jensen L, Fang L, Juluri BK, Flood AH, Weiss PS, Stoddart JF, Huang TJ.

Nano Lett. 2009 Feb;9(2):819-25. doi: 10.1021/nl803539g.

PMID:
19119869
[PubMed]
5.

Plasmonics: merging photonics and electronics at nanoscale dimensions.

Ozbay E.

Science. 2006 Jan 13;311(5758):189-93.

PMID:
16410515
[PubMed]
6.

Plasmonics in nanostructures.

Fang Z, Zhu X.

Adv Mater. 2013 Jul 26;25(28):3840-56. doi: 10.1002/adma.201301203. Epub 2013 Jun 28. Review.

PMID:
23813594
[PubMed - indexed for MEDLINE]
7.

A nonvolatile plasmonic switch employing photochromic molecules.

Pala RA, Shimizu KT, Melosh NA, Brongersma ML.

Nano Lett. 2008 May;8(5):1506-10. doi: 10.1021/nl0808839. Epub 2008 Apr 16.

PMID:
18412401
[PubMed - indexed for MEDLINE]
8.

Towards nonlinear plasmonic devices based on metallic nanorods.

Dickson W, Evans PR, Wurtz GA, Hendren W, Atkinson R, Pollard RJ, Zayats AV.

J Microsc. 2008 Mar;229(Pt 3):415-20. doi: 10.1111/j.1365-2818.2008.01921.x.

PMID:
18331488
[PubMed]
9.

Tunable electrochemical switch of the optical properties of metallic nanoparticles.

Leroux Y, Lacroix JC, Fave C, Trippe G, Félidj N, Aubard J, Hohenau A, Krenn JR.

ACS Nano. 2008 Apr;2(4):728-32. doi: 10.1021/nn700438a.

PMID:
19206604
[PubMed - indexed for MEDLINE]
10.

The fabrication of plasmonic Au nanovoid trench arrays by guided self-assembly.

Li XV, Cole RM, Milhano CA, Bartlett PN, Soares BF, Baumberg JJ, de Groot CH.

Nanotechnology. 2009 Jul 15;20(28):285309. doi: 10.1088/0957-4484/20/28/285309. Epub 2009 Jun 23.

PMID:
19546497
[PubMed - indexed for MEDLINE]
11.

A new generation of sensors based on extraordinary optical transmission.

Gordon R, Sinton D, Kavanagh KL, Brolo AG.

Acc Chem Res. 2008 Aug;41(8):1049-57. doi: 10.1021/ar800074d. Epub 2008 Jul 8. Review.

PMID:
18605739
[PubMed - indexed for MEDLINE]
12.

Coupling dielectric waveguide modes to surface plasmon polaritons.

Ditlbacher H, Galler N, Koller DM, Hohenau A, Leitner A, Aussenegg FR, Krenn JR.

Opt Express. 2008 Jul 7;16(14):10455-64.

PMID:
18607458
[PubMed - indexed for MEDLINE]
13.

Chemical modification of the electronic conducting states in polymer nanodevices.

Zhitenev NB, Sidorenko A, Tennant DM, Cirelli RA.

Nat Nanotechnol. 2007 Apr;2(4):237-42. doi: 10.1038/nnano.2007.75. Epub 2007 Apr 1.

PMID:
18654269
[PubMed - indexed for MEDLINE]
14.

Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal.

Dickson W, Wurtz GA, Evans PR, Pollard RJ, Zayats AV.

Nano Lett. 2008 Jan;8(1):281-6. Epub 2007 Dec 18.

PMID:
18085813
[PubMed]
15.

Molecular plasmonics with tunable exciton-plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies.

Wurtz GA, Evans PR, Hendren W, Atkinson R, Dickson W, Pollard RJ, Zayats AV, Harrison W, Bower C.

Nano Lett. 2007 May;7(5):1297-303. Epub 2007 Apr 25.

PMID:
17455984
[PubMed]
16.

Surface plasmon resonance in two-dimensional nanobottle arrays.

Iu H, Li J, Ong HC, Wan JT.

Opt Express. 2008 Jul 7;16(14):10294-302.

PMID:
18607438
[PubMed - indexed for MEDLINE]
17.

Optically enhanced emission of localized excitons in InxGa1-xN films by coupling to plasmons in a gold nanoparticle.

Toropov AA, Shubina TV, Jmerik VN, Ivanov SV, Ogawa Y, Minami F.

Phys Rev Lett. 2009 Jul 17;103(3):037403. Epub 2009 Jul 16.

PMID:
19659316
[PubMed]
18.

Plasmonic nanorod metamaterials for biosensing.

Kabashin AV, Evans P, Pastkovsky S, Hendren W, Wurtz GA, Atkinson R, Pollard R, Podolskiy VA, Zayats AV.

Nat Mater. 2009 Nov;8(11):867-71. doi: 10.1038/nmat2546. Epub 2009 Oct 11.

PMID:
19820701
[PubMed - indexed for MEDLINE]
19.

Flying plasmonic lens in the near field for high-speed nanolithography.

Srituravanich W, Pan L, Wang Y, Sun C, Bogy DB, Zhang X.

Nat Nanotechnol. 2008 Dec;3(12):733-7. doi: 10.1038/nnano.2008.303. Epub 2008 Oct 12.

PMID:
19057593
[PubMed - indexed for MEDLINE]
20.

Tunable plasmonic response from alkanethiolate-stabilized gold nanoparticle superlattices: evidence of near-field coupling.

Chen CF, Tzeng SD, Chen HY, Lin KJ, Gwo S.

J Am Chem Soc. 2008 Jan 23;130(3):824-6. doi: 10.1021/ja0773610. Epub 2007 Dec 29.

PMID:
18163631
[PubMed]

Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk