Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 131

Similar articles for PubMed (Select 16269718)

1.
4.

Global gene expression analysis of yeast cells during sake brewing.

Wu H, Zheng X, Araki Y, Sahara H, Takagi H, Shimoi H.

Appl Environ Microbiol. 2006 Nov;72(11):7353-8. Epub 2006 Sep 22.

5.

[Construction of high sulphite-producing industrial strain of Saccharomyces cerevisiae].

Qu N, He XP, Guo XN, Liu N, Zhang BR.

Wei Sheng Wu Xue Bao. 2006 Feb;46(1):38-42. Chinese.

PMID:
16579462
6.

The Awa1 gene is required for the foam-forming phenotype and cell surface hydrophobicity of sake yeast.

Shimoi H, Sakamoto K, Okuda M, Atthi R, Iwashita K, Ito K.

Appl Environ Microbiol. 2002 Apr;68(4):2018-25.

7.

Identification of target genes conferring ethanol stress tolerance to Saccharomyces cerevisiae based on DNA microarray data analysis.

Hirasawa T, Yoshikawa K, Nakakura Y, Nagahisa K, Furusawa C, Katakura Y, Shimizu H, Shioya S.

J Biotechnol. 2007 Aug 1;131(1):34-44. Epub 2007 May 24.

PMID:
17604866
8.

Characterization of Ccw7p cell wall proteins and the encoding genes of Saccharomyces cerevisiae wine yeast strains: relevance for flor formation.

Kovács M, Stuparevic I, Mrsa V, Maráz A.

FEMS Yeast Res. 2008 Nov;8(7):1115-26. doi: 10.1111/j.1567-1364.2008.00413.x. Epub 2008 Jul 23.

9.
10.

Comparative analysis of transcriptional responses to saline stress in the laboratory and brewing strains of Saccharomyces cerevisiae with DNA microarray.

Hirasawa T, Nakakura Y, Yoshikawa K, Ashitani K, Nagahisa K, Furusawa C, Katakura Y, Shimizu H, Shioya S.

Appl Microbiol Biotechnol. 2006 Apr;70(3):346-57. Epub 2005 Nov 11.

PMID:
16283296
11.

Effect of amino acids on peptide transport in sake yeast.

Yamada T, Furukawa K, Hara S, Mizoguchi H.

J Biosci Bioeng. 2005 Apr;99(4):383-9.

PMID:
16233806
12.

Amplified fragment length polymorphism of the AWA1 gene of sake yeasts for identification of sake yeast strains.

Shimizu M, Miyashita K, Kitagaki H, Ito K, Shimoi H.

J Biosci Bioeng. 2005 Dec;100(6):678-80.

PMID:
16473780
13.
14.

Eukaryote-to-eukaryote gene transfer events revealed by the genome sequence of the wine yeast Saccharomyces cerevisiae EC1118.

Novo M, Bigey F, Beyne E, Galeote V, Gavory F, Mallet S, Cambon B, Legras JL, Wincker P, Casaregola S, Dequin S.

Proc Natl Acad Sci U S A. 2009 Sep 22;106(38):16333-8. doi: 10.1073/pnas.0904673106. Epub 2009 Sep 9.

15.

High expression of unsaturated fatty acid synthesis gene OLE 1 in sake yeasts.

Yamada T, Shimoi H, Ito K.

J Biosci Bioeng. 2005 May;99(5):512-6.

PMID:
16233825
16.

Molecular response of Saccharomyces cerevisiae wine and laboratory strains to high sugar stress conditions.

Jiménez-Martí E, Zuzuarregui A, Gomar-Alba M, Gutiérrez D, Gil C, del Olmo M.

Int J Food Microbiol. 2011 Jan 31;145(1):211-20. doi: 10.1016/j.ijfoodmicro.2010.12.023. Epub 2011 Jan 4.

PMID:
21247650
17.

De novo sequencing, assembly and analysis of the genome of the laboratory strain Saccharomyces cerevisiae CEN.PK113-7D, a model for modern industrial biotechnology.

Nijkamp JF, van den Broek M, Datema E, de Kok S, Bosman L, Luttik MA, Daran-Lapujade P, Vongsangnak W, Nielsen J, Heijne WH, Klaassen P, Paddon CJ, Platt D, Kötter P, van Ham RC, Reinders MJ, Pronk JT, de Ridder D, Daran JM.

Microb Cell Fact. 2012 Mar 26;11:36. doi: 10.1186/1475-2859-11-36.

18.

Characterization of a novel tyrosine permease of lager brewing yeast shared by Saccharomyces cerevisiae strain RM11-1a.

Omura F, Hatanaka H, Nakao Y.

FEMS Yeast Res. 2007 Dec;7(8):1350-61. Epub 2007 Sep 6.

20.

Accelerated alcoholic fermentation caused by defective gene expression related to glucose derepression in Saccharomyces cerevisiae.

Watanabe D, Hashimoto N, Mizuno M, Zhou Y, Akao T, Shimoi H.

Biosci Biotechnol Biochem. 2013;77(11):2255-62. Epub 2013 Nov 7.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk