Format
Items per page
Sort by

Send to:

Choose Destination

Links from PubMed

Items: 1 to 20 of 128

1.

The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism.

Koo SH, Flechner L, Qi L, Zhang X, Screaton RA, Jeffries S, Hedrick S, Xu W, Boussouar F, Brindle P, Takemori H, Montminy M.

Nature. 2005 Oct 20;437(7062):1109-11. Epub 2005 Sep 7.

PMID:
16148943
2.

Dual role of the coactivator TORC2 in modulating hepatic glucose output and insulin signaling.

Canettieri G, Koo SH, Berdeaux R, Heredia J, Hedrick S, Zhang X, Montminy M.

Cell Metab. 2005 Nov;2(5):331-8.

3.

More TORC for the gluconeogenic engine.

Cheng A, Saltiel AR.

Bioessays. 2006 Mar;28(3):231-4.

PMID:
16479585
4.

Insulin modulates gluconeogenesis by inhibition of the coactivator TORC2.

Dentin R, Liu Y, Koo SH, Hedrick S, Vargas T, Heredia J, Yates J 3rd, Montminy M.

Nature. 2007 Sep 20;449(7160):366-9. Epub 2007 Sep 5.

PMID:
17805301
5.

p38 Mitogen-activated protein kinase plays a stimulatory role in hepatic gluconeogenesis.

Cao W, Collins QF, Becker TC, Robidoux J, Lupo EG Jr, Xiong Y, Daniel KW, Floering L, Collins S.

J Biol Chem. 2005 Dec 30;280(52):42731-7. Epub 2005 Nov 3.

6.

CREB regulates hepatic gluconeogenesis through the coactivator PGC-1.

Herzig S, Long F, Jhala US, Hedrick S, Quinn R, Bauer A, Rudolph D, Schutz G, Yoon C, Puigserver P, Spiegelman B, Montminy M.

Nature. 2001 Sep 13;413(6852):179-83. Erratum in: Nature 2001 Oct 11;413(6856):652.

PMID:
11557984
7.

Hepatic glucose sensing via the CREB coactivator CRTC2.

Dentin R, Hedrick S, Xie J, Yates J 3rd, Montminy M.

Science. 2008 Mar 7;319(5868):1402-5. doi: 10.1126/science.1151363.

8.

The CREB coactivator TORC2 functions as a calcium- and cAMP-sensitive coincidence detector.

Screaton RA, Conkright MD, Katoh Y, Best JL, Canettieri G, Jeffries S, Guzman E, Niessen S, Yates JR 3rd, Takemori H, Okamoto M, Montminy M.

Cell. 2004 Oct 1;119(1):61-74.

9.

The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin.

Shaw RJ, Lamia KA, Vasquez D, Koo SH, Bardeesy N, Depinho RA, Montminy M, Cantley LC.

Science. 2005 Dec 9;310(5754):1642-6. Epub 2005 Nov 24.

10.

AMPK-dependent repression of hepatic gluconeogenesis via disruption of CREB.CRTC2 complex by orphan nuclear receptor small heterodimer partner.

Lee JM, Seo WY, Song KH, Chanda D, Kim YD, Kim DK, Lee MW, Ryu D, Kim YH, Noh JR, Lee CH, Chiang JY, Koo SH, Choi HS.

J Biol Chem. 2010 Oct 15;285(42):32182-91. doi: 10.1074/jbc.M110.134890. Epub 2010 Aug 5.

11.

Silencing the constitutive active transcription factor CREB by the LKB1-SIK signaling cascade.

Katoh Y, Takemori H, Lin XZ, Tamura M, Muraoka M, Satoh T, Tsuchiya Y, Min L, Doi J, Miyauchi A, Witters LA, Nakamura H, Okamoto M.

FEBS J. 2006 Jun;273(12):2730-48.

12.

CRTC2 (TORC2) contributes to the transcriptional response to fasting in the liver but is not required for the maintenance of glucose homeostasis.

Le Lay J, Tuteja G, White P, Dhir R, Ahima R, Kaestner KH.

Cell Metab. 2009 Jul;10(1):55-62. doi: 10.1016/j.cmet.2009.06.006.

13.

Glucose controls CREB activity in islet cells via regulated phosphorylation of TORC2.

Jansson D, Ng AC, Fu A, Depatie C, Al Azzabi M, Screaton RA.

Proc Natl Acad Sci U S A. 2008 Jul 22;105(29):10161-6. doi: 10.1073/pnas.0800796105. Epub 2008 Jul 14.

14.

Phosphorylation of the CREB-specific coactivator TORC2 at Ser(307) regulates its intracellular localization in COS-7 cells and in the mouse liver.

Uebi T, Tamura M, Horike N, Hashimoto YK, Takemori H.

Am J Physiol Endocrinol Metab. 2010 Sep;299(3):E413-25. doi: 10.1152/ajpendo.00525.2009. Epub 2010 Jun 15.

15.

Novel liver-specific TORC2 siRNA corrects hyperglycemia in rodent models of type 2 diabetes.

Saberi M, Bjelica D, Schenk S, Imamura T, Bandyopadhyay G, Li P, Jadhar V, Vargeese C, Wang W, Bowman K, Zhang Y, Polisky B, Olefsky JM.

Am J Physiol Endocrinol Metab. 2009 Nov;297(5):E1137-46. doi: 10.1152/ajpendo.00158.2009. Epub 2009 Aug 25.

16.

The CREB coactivator CRTC2 links hepatic ER stress and fasting gluconeogenesis.

Wang Y, Vera L, Fischer WH, Montminy M.

Nature. 2009 Jul 23;460(7254):534-7. doi: 10.1038/nature08111. Epub 2009 Jun 21.

17.

A fasting inducible switch modulates gluconeogenesis via activator/coactivator exchange.

Liu Y, Dentin R, Chen D, Hedrick S, Ravnskjaer K, Schenk S, Milne J, Meyers DJ, Cole P, Yates J 3rd, Olefsky J, Guarente L, Montminy M.

Nature. 2008 Nov 13;456(7219):269-73. doi: 10.1038/nature07349. Epub 2008 Oct 5.

18.

AMP-activated protein kinase activation increases phosphorylation of glycogen synthase kinase 3beta and thereby reduces cAMP-responsive element transcriptional activity and phosphoenolpyruvate carboxykinase C gene expression in the liver.

Horike N, Sakoda H, Kushiyama A, Ono H, Fujishiro M, Kamata H, Nishiyama K, Uchijima Y, Kurihara Y, Kurihara H, Asano T.

J Biol Chem. 2008 Dec 5;283(49):33902-10. doi: 10.1074/jbc.M802537200. Epub 2008 Sep 17.

19.

Gluconeogenic signals regulate iron homeostasis via hepcidin in mice.

Vecchi C, Montosi G, Garuti C, Corradini E, Sabelli M, Canali S, Pietrangelo A.

Gastroenterology. 2014 Apr;146(4):1060-9. doi: 10.1053/j.gastro.2013.12.016. Epub 2013 Dec 17.

20.

Role of hepatic AMPK activation in glucose metabolism and dexamethasone-induced regulation of AMPK expression.

Viana AY, Sakoda H, Anai M, Fujishiro M, Ono H, Kushiyama A, Fukushima Y, Sato Y, Oshida Y, Uchijima Y, Kurihara H, Asano T.

Diabetes Res Clin Pract. 2006 Aug;73(2):135-42. Epub 2006 Feb 28.

PMID:
16503364
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk