Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 141

1.

Zebrafish bandoneon mutants display behavioral defects due to a mutation in the glycine receptor beta-subunit.

Hirata H, Saint-Amant L, Downes GB, Cui WW, Zhou W, Granato M, Kuwada JY.

Proc Natl Acad Sci U S A. 2005 Jun 7;102(23):8345-50. Epub 2005 May 31.

2.

Distinct phenotypes in zebrafish models of human startle disease.

Ganser LR, Yan Q, James VM, Kozol R, Topf M, Harvey RJ, Dallman JE.

Neurobiol Dis. 2013 Dec;60:139-51. doi: 10.1016/j.nbd.2013.09.002. Epub 2013 Sep 9.

3.

Defective glycinergic synaptic transmission in zebrafish motility mutants.

Hirata H, Carta E, Yamanaka I, Harvey RJ, Kuwada JY.

Front Mol Neurosci. 2010 Jan 8;2:26. doi: 10.3389/neuro.02.026.2009. eCollection 2009.

4.

Defective escape behavior in DEAH-box RNA helicase mutants improved by restoring glycine receptor expression.

Hirata H, Ogino K, Yamada K, Leacock S, Harvey RJ.

J Neurosci. 2013 Sep 11;33(37):14638-44. doi: 10.1523/JNEUROSCI.1157-13.2013.

5.

Glycinergic transmission and postsynaptic activation of CaMKII are required for glycine receptor clustering in vivo.

Yamanaka I, Miki M, Asakawa K, Kawakami K, Oda Y, Hirata H.

Genes Cells. 2013 Mar;18(3):211-24. doi: 10.1111/gtc.12032. Epub 2013 Jan 25.

6.

Defects of the Glycinergic Synapse in Zebrafish.

Ogino K, Hirata H.

Front Mol Neurosci. 2016 Jun 29;9:50. doi: 10.3389/fnmol.2016.00050. eCollection 2016. Review.

7.

accordion, a zebrafish behavioral mutant, has a muscle relaxation defect due to a mutation in the ATPase Ca2+ pump SERCA1.

Hirata H, Saint-Amant L, Waterbury J, Cui W, Zhou W, Li Q, Goldman D, Granato M, Kuwada JY.

Development. 2004 Nov;131(21):5457-68. Epub 2004 Oct 6.

8.

Characterization of two mutations, M287L and Q266I, in the α1 glycine receptor subunit that modify sensitivity to alcohols.

Borghese CM, Blednov YA, Quan Y, Iyer SV, Xiong W, Mihic SJ, Zhang L, Lovinger DM, Trudell JR, Homanics GE, Harris RA.

J Pharmacol Exp Ther. 2012 Feb;340(2):304-16. doi: 10.1124/jpet.111.185116. Epub 2011 Oct 28.

9.

Duplicated gephyrin genes showing distinct tissue distribution and alternative splicing patterns mediate molybdenum cofactor biosynthesis, glycine receptor clustering, and escape behavior in zebrafish.

Ogino K, Ramsden SL, Keib N, Schwarz G, Harvey RJ, Hirata H.

J Biol Chem. 2011 Jan 7;286(1):806-17. doi: 10.1074/jbc.M110.125500. Epub 2010 Sep 14.

10.

Hyperekplexia phenotype of glycine receptor alpha1 subunit mutant mice identifies Zn(2+) as an essential endogenous modulator of glycinergic neurotransmission.

Hirzel K, Müller U, Latal AT, Hülsmann S, Grudzinska J, Seeliger MW, Betz H, Laube B.

Neuron. 2006 Nov 22;52(4):679-90.

11.

Glycine receptor knock-in mice and hyperekplexia-like phenotypes: comparisons with the null mutant.

Findlay GS, Phelan R, Roberts MT, Homanics GE, Bergeson SE, Lopreato GF, Mihic SJ, Blednov YA, Harris RA.

J Neurosci. 2003 Sep 3;23(22):8051-9.

12.

The zebrafish shocked gene encodes a glycine transporter and is essential for the function of early neural circuits in the CNS.

Cui WW, Low SE, Hirata H, Saint-Amant L, Geisler R, Hume RI, Kuwada JY.

J Neurosci. 2005 Jul 13;25(28):6610-20.

13.

Disease-specific human glycine receptor alpha1 subunit causes hyperekplexia phenotype and impaired glycine- and GABA(A)-receptor transmission in transgenic mice.

Becker L, von Wegerer J, Schenkel J, Zeilhofer HU, Swandulla D, Weiher H.

J Neurosci. 2002 Apr 1;22(7):2505-12.

14.

Synaptic homeostasis in a zebrafish glial glycine transporter mutant.

Mongeon R, Gleason MR, Masino MA, Fetcho JR, Mandel G, Brehm P, Dallman JE.

J Neurophysiol. 2008 Oct;100(4):1716-23. doi: 10.1152/jn.90596.2008. Epub 2008 Aug 20.

15.

The zebrafish ennui behavioral mutation disrupts acetylcholine receptor localization and motor axon stability.

Saint-Amant L, Sprague SM, Hirata H, Li Q, Cui WW, Zhou W, Poudou O, Hume RI, Kuwada JY.

Dev Neurobiol. 2008 Jan;68(1):45-61.

16.

The biological role of the glycinergic synapse in early zebrafish motility.

Hirata H, Takahashi M, Yamada K, Ogino K.

Neurosci Res. 2011 Sep;71(1):1-11. doi: 10.1016/j.neures.2011.06.003. Epub 2011 Jun 17. Review.

PMID:
21712054
17.
18.

Functional reconstitution of glycinergic synapses incorporating defined glycine receptor subunit combinations.

Zhang Y, Dixon CL, Keramidas A, Lynch JW.

Neuropharmacology. 2015 Feb;89:391-7.

PMID:
25445488
19.

Structure and functions of inhibitory and excitatory glycine receptors.

Betz H, Kuhse J, Schmieden V, Laube B, Kirsch J, Harvey RJ.

Ann N Y Acad Sci. 1999 Apr 30;868:667-76. Review.

PMID:
10414351
20.

Plasticity of synaptic inhibition in mouse spinal cord lamina II neurons during early postnatal development and after inactivation of the glycine receptor alpha3 subunit gene.

Rajalu M, Müller UC, Caley A, Harvey RJ, Poisbeau P.

Eur J Neurosci. 2009 Dec;30(12):2284-92. doi: 10.1111/j.1460-9568.2009.07018.x. Epub 2009 Dec 10.

PMID:
20092571
Items per page

Supplemental Content

Write to the Help Desk