Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 225

1.
2.

The structures of four macrolide antibiotics bound to the large ribosomal subunit.

Hansen JL, Ippolito JA, Ban N, Nissen P, Moore PB, Steitz TA.

Mol Cell. 2002 Jul;10(1):117-28.

3.

Structures of the Escherichia coli ribosome with antibiotics bound near the peptidyl transferase center explain spectra of drug action.

Dunkle JA, Xiong L, Mankin AS, Cate JH.

Proc Natl Acad Sci U S A. 2010 Oct 5;107(40):17152-7. doi: 10.1073/pnas.1007988107. Epub 2010 Sep 27.

4.

Structural basis for the antibiotic activity of ketolides and azalides.

Schlünzen F, Harms JM, Franceschi F, Hansen HA, Bartels H, Zarivach R, Yonath A.

Structure. 2003 Mar;11(3):329-38.

5.

Revisiting the structures of several antibiotics bound to the bacterial ribosome.

Bulkley D, Innis CA, Blaha G, Steitz TA.

Proc Natl Acad Sci U S A. 2010 Oct 5;107(40):17158-63. doi: 10.1073/pnas.1008685107. Epub 2010 Sep 27.

6.

Binding site of the bridged macrolides in the Escherichia coli ribosome.

Xiong L, Korkhin Y, Mankin AS.

Antimicrob Agents Chemother. 2005 Jan;49(1):281-8.

7.

Direct localization by cryo-electron microscopy of secondary structural elements in Escherichia coli 23 S rRNA which differ from the corresponding regions in Haloarcula marismortui.

Matadeen R, Sergiev P, Leonov A, Pape T, van der Sluis E, Mueller F, Osswald M, von Knoblauch K, Brimacombe R, Bogdanov A, van Heel M, Dontsova O.

J Mol Biol. 2001 Apr 13;307(5):1341-9.

PMID:
11292346
8.
9.

L22 ribosomal protein and effect of its mutation on ribosome resistance to erythromycin.

Davydova N, Streltsov V, Wilce M, Liljas A, Garber M.

J Mol Biol. 2002 Sep 20;322(3):635-44.

PMID:
12225755
10.
11.

Species-specific antibiotic-ribosome interactions: implications for drug development.

Wilson DN, Harms JM, Nierhaus KH, Schlünzen F, Fucini P.

Biol Chem. 2005 Dec;386(12):1239-52. Review.

PMID:
16336118
12.

Structural insight into the antibiotic action of telithromycin against resistant mutants.

Berisio R, Harms J, Schluenzen F, Zarivach R, Hansen HA, Fucini P, Yonath A.

J Bacteriol. 2003 Jul;185(14):4276-9. Erratum in: J Bacteriol. 2003 Aug;185(16):5027.

13.

Stepwise binding of tylosin and erythromycin to Escherichia coli ribosomes, characterized by kinetic and footprinting analysis.

Petropoulos AD, Kouvela EC, Dinos GP, Kalpaxis DL.

J Biol Chem. 2008 Feb 22;283(8):4756-65. Epub 2007 Dec 13.

15.
16.

Emergence of a 23S rRNA mutation in Mycoplasma hominis associated with a loss of the intrinsic resistance to erythromycin and azithromycin.

Pereyre S, Renaudin H, Charron A, Bébéar C, Bébéar CM.

J Antimicrob Chemother. 2006 Apr;57(4):753-6. Epub 2006 Feb 7.

17.
18.

Time-resolved binding of azithromycin to Escherichia coli ribosomes.

Petropoulos AD, Kouvela EC, Starosta AL, Wilson DN, Dinos GP, Kalpaxis DL.

J Mol Biol. 2009 Jan 30;385(4):1179-92. doi: 10.1016/j.jmb.2008.11.042. Epub 2008 Nov 27.

PMID:
19071138
19.

Binding and action of CEM-101, a new fluoroketolide antibiotic that inhibits protein synthesis.

Llano-Sotelo B, Dunkle J, Klepacki D, Zhang W, Fernandes P, Cate JH, Mankin AS.

Antimicrob Agents Chemother. 2010 Dec;54(12):4961-70. doi: 10.1128/AAC.00860-10. Epub 2010 Sep 20.

20.

Investigating the entire course of telithromycin binding to Escherichia coli ribosomes.

Kostopoulou ON, Petropoulos AD, Dinos GP, Choli-Papadopoulou T, Kalpaxis DL.

Nucleic Acids Res. 2012 Jun;40(11):5078-87. doi: 10.1093/nar/gks174. Epub 2012 Feb 22.

Items per page

Supplemental Content

Write to the Help Desk