Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 182

1.

Simulation of specimen-induced aberrations for objects with spherical and cylindrical symmetry.

Schwertner M, Booth MJ, Wilson T.

J Microsc. 2004 Sep;215(Pt 3):271-80.

2.

Measurement of specimen-induced aberrations of biological samples using phase stepping interferometry.

Schwertner M, Booth MJ, Neil MA, Wilson T.

J Microsc. 2004 Jan;213(Pt 1):11-9.

3.

Effects of Zernike wavefront aberrations on visual acuity measured using electromagnetic adaptive optics technology.

Rocha KM, Vabre L, Harms F, Chateau N, Krueger RR.

J Refract Surg. 2007 Nov;23(9):953-9.

PMID:
18041253
4.

Characterizing specimen induced aberrations for high NA adaptive optical microscopy.

Schwertner M, Booth M, Wilson T.

Opt Express. 2004 Dec 27;12(26):6540-52.

PMID:
19488305
5.

Pupil matching of Zernike aberrations.

Leroux CE, Tzschachmann A, Dainty JC.

Opt Express. 2010 Oct 11;18(21):21567-72. doi: 10.1364/OE.18.021567.

PMID:
20941054
6.

Precision interferometry for measuring wavefronts of multi-wavelength optical pickups.

Ge Z, Saito T, Kurose M, Kanda H, Arakawa K, Takeda M.

Opt Express. 2008 Jan 7;16(1):133-43.

PMID:
18521141
7.

Adaptive aberration correction in a confocal microscope.

Booth MJ, Neil MA, Juskaitis R, Wilson T.

Proc Natl Acad Sci U S A. 2002 Apr 30;99(9):5788-92. Epub 2002 Apr 16.

8.
9.
10.

No wavefront sensor adaptive optics system for compensation of primary aberrations by software analysis of a point source image. 1. Methods.

Grisan E, Frassetto F, Da Deppo V, Naletto G, Ruggeri A.

Appl Opt. 2007 Sep 1;46(25):6434-41.

PMID:
17805384
11.

Aberration-free optical refocusing in high numerical aperture microscopy.

Botcherby EJ, Juskaitis R, Booth MJ, Wilson T.

Opt Lett. 2007 Jul 15;32(14):2007-9.

PMID:
17632625
12.

Adaptive optics confocal microscopy using direct wavefront sensing.

Tao X, Fernandez B, Azucena O, Fu M, Garcia D, Zuo Y, Chen DC, Kubby J.

Opt Lett. 2011 Apr 1;36(7):1062-4. doi: 10.1364/OL.36.001062.

PMID:
21478983
13.

Optical aberrations in the mouse eye.

de la Cera EG, Rodríguez G, Llorente L, Schaeffel F, Marcos S.

Vision Res. 2006 Aug;46(16):2546-53. Epub 2006 Mar 3.

14.

New modal wave-front sensor: application to adaptive confocal fluorescence microscopy and two-photon excitation fluorescence microscopy.

Booth MJ, Neil MA, Wilson T.

J Opt Soc Am A Opt Image Sci Vis. 2002 Oct;19(10):2112-20.

PMID:
12365630
15.
16.

Use of adaptive optics to determine the optimal ocular spherical aberration.

Piers PA, Manzanera S, Prieto PM, Gorceix N, Artal P.

J Cataract Refract Surg. 2007 Oct;33(10):1721-6.

PMID:
17889766
17.

Quantitative comparison of different-shaped wavefront sensors and preliminary results for defocus aberrations on a mechanical eye.

Carvalho LA, Chamon W, Schor P, Castro JC.

Arq Bras Oftalmol. 2006 Mar-Apr;69(2):239-47. Epub 2006 May 8.

18.

Effects of spherical aberration on visual acuity at different contrasts.

Li J, Xiong Y, Wang N, Li S, Dai Y, Xue L, Zhao H, Jiang W, Zhang Y.

J Cataract Refract Surg. 2009 Aug;35(8):1389-95. doi: 10.1016/j.jcrs.2009.03.033.

PMID:
19631126
19.

Analysis of the optical properties of crystalline lenses by point-diffraction interferometry.

Acosta E, Vázquez D, Castillo LR.

Ophthalmic Physiol Opt. 2009 May;29(3):235-46. doi: 10.1111/j.1475-1313.2009.00661.x.

PMID:
19422554
20.

Adaptive optics in microscopy.

Booth MJ.

Philos Trans A Math Phys Eng Sci. 2007 Dec 15;365(1861):2829-43. Review.

Items per page

Supplemental Content

Write to the Help Desk