Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 253

Similar articles for PubMed (Select 15311335)

1.

Mo and W bis-MGD enzymes: nitrate reductases and formate dehydrogenases.

Moura JJ, Brondino CD, Trincão J, Romão MJ.

J Biol Inorg Chem. 2004 Oct;9(7):791-9. Epub 2004 Aug 12. Review.

PMID:
15311335
2.

Activation of nit-1 nitrate reductase by W-formate dehydrogenase.

Deaton JC, Solomon EI, Durfor CN, Wetherbee PJ, Burgess BK, Jacobs DB.

Biochem Biophys Res Commun. 1984 Jun 29;121(3):1042-7.

PMID:
6234890
3.

Mutagenesis study on amino acids around the molybdenum centre of the periplasmic nitrate reductase from Ralstonia eutropha.

Hettmann T, Siddiqui RA, Frey C, Santos-Silva T, Romão MJ, Diekmann S.

Biochem Biophys Res Commun. 2004 Aug 6;320(4):1211-9.

PMID:
15249219
5.

Characterization and spectroscopic properties of reduced Mo and W formate dehydrogenase from C. thermoaceticum.

Durfor CN, Wetherbee PJ, Deaton JC, Solomon EI.

Biochem Biophys Res Commun. 1983 Aug 30;115(1):61-7.

PMID:
6311213
7.

Molybdenum and tungsten enzymes: the xanthine oxidase family.

Brondino CD, Romão MJ, Moura I, Moura JJ.

Curr Opin Chem Biol. 2006 Apr;10(2):109-14. Epub 2006 Feb 15. Review.

PMID:
16480912
8.

Major Mo(V) EPR signature of Rhodobacter sphaeroides periplasmic nitrate reductase arising from a dead-end species that activates upon reduction. Relation to other molybdoenzymes from the DMSO reductase family.

Fourmond V, Burlat B, Dementin S, Arnoux P, Sabaty M, Boiry S, Guigliarelli B, Bertrand P, Pignol D, Léger C.

J Phys Chem B. 2008 Dec 4;112(48):15478-86. doi: 10.1021/jp807092y.

PMID:
19006273
9.

Molybdoenzymes and molybdenum cofactor in plants.

Mendel RR, Hänsch R.

J Exp Bot. 2002 Aug;53(375):1689-98. Review.

10.

The mononuclear molybdenum enzymes.

Hille R, Hall J, Basu P.

Chem Rev. 2014 Apr 9;114(7):3963-4038. doi: 10.1021/cr400443z. Epub 2014 Jan 28. Review. No abstract available.

11.

Architecture of NarGH reveals a structural classification of Mo-bisMGD enzymes.

Jormakka M, Richardson D, Byrne B, Iwata S.

Structure. 2004 Jan;12(1):95-104.

PMID:
14725769
12.
13.

Mutagenesis study on the role of a lysine residue highly conserved in formate dehydrogenases and periplasmic nitrate reductases.

Hettmann T, Siddiqui RA, von Langen J, Frey C, Romão MJ, Diekmann S.

Biochem Biophys Res Commun. 2003 Oct 10;310(1):40-7.

PMID:
14511645
14.

Structural and electron paramagnetic resonance (EPR) studies of mononuclear molybdenum enzymes from sulfate-reducing bacteria.

Brondino CD, Rivas MG, Romão MJ, Moura JJ, Moura I.

Acc Chem Res. 2006 Oct;39(10):788-96. Review. Erratum in: Acc Chem Res. 2007 Mar;40(3):231.

PMID:
17042479
15.
16.

Tungsten, the surprisingly positively acting heavy metal element for prokaryotes.

Andreesen JR, Makdessi K.

Ann N Y Acad Sci. 2008 Mar;1125:215-29. Epub 2007 Dec 20. Review.

PMID:
18096847
17.

Molybdenum and tungsten enzymes: a crystallographic and mechanistic overview.

Romão MJ.

Dalton Trans. 2009 Jun 7;(21):4053-68. doi: 10.1039/b821108f. Epub 2009 Mar 14. Review.

PMID:
19452052
18.

In Rhodobacter sphaeroides respiratory nitrate reductase, the kinetics of substrate binding favors intramolecular electron transfer.

Frangioni B, Arnoux P, Sabaty M, Pignol D, Bertrand P, Guigliarelli B, Léger C.

J Am Chem Soc. 2004 Feb 11;126(5):1328-9.

PMID:
14759176
19.
20.

The coordination and function of the redox centres of the membrane-bound nitrate reductases.

Blasco F, Guigliarelli B, Magalon A, Asso M, Giordano G, Rothery RA.

Cell Mol Life Sci. 2001 Feb;58(2):179-93. Review.

PMID:
11289300
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk