Format
Items per page
Sort by

Send to:

Choose Destination

Links from PubMed

Items: 1 to 20 of 450

1.

Structural basis for recognition of the AGNN tetraloop RNA fold by the double-stranded RNA-binding domain of Rnt1p RNase III.

Wu H, Henras A, Chanfreau G, Feigon J.

Proc Natl Acad Sci U S A. 2004 Jun 1;101(22):8307-12. Epub 2004 May 18.

2.

Structure of an AAGU tetraloop and its contribution to substrate selection by yeast RNase III.

Gaudin C, Ghazal G, Yoshizawa S, Elela SA, Fourmy D.

J Mol Biol. 2006 Oct 20;363(2):322-31. Epub 2006 Aug 16.

PMID:
16979185
3.

Biochemical and genomic analysis of substrate recognition by the double-stranded RNA binding domain of yeast RNase III.

Henras AK, Sam M, Hiley SL, Wu H, Hughes TR, Feigon J, Chanfreau GF.

RNA. 2005 Aug;11(8):1225-37. Epub 2005 Jun 29.

4.

A new alpha-helical extension promotes RNA binding by the dsRBD of Rnt1p RNAse III.

Leulliot N, Quevillon-Cheruel S, Graille M, van Tilbeurgh H, Leeper TC, Godin KS, Edwards TE, Sigurdsson ST, Rozenkrants N, Nagel RJ, Ares M, Varani G.

EMBO J. 2004 Jul 7;23(13):2468-77. Epub 2004 Jun 10.

5.

A conserved major groove antideterminant for Saccharomyces cerevisiae RNase III recognition.

Sam M, Henras AK, Chanfreau G.

Biochemistry. 2005 Mar 22;44(11):4181-7.

PMID:
15766245
6.

A novel family of RNA tetraloop structure forms the recognition site for Saccharomyces cerevisiae RNase III.

Wu H, Yang PK, Butcher SE, Kang S, Chanfreau G, Feigon J.

EMBO J. 2001 Dec 17;20(24):7240-9.

7.

Structure of a yeast RNase III dsRBD complex with a noncanonical RNA substrate provides new insights into binding specificity of dsRBDs.

Wang Z, Hartman E, Roy K, Chanfreau G, Feigon J.

Structure. 2011 Jul 13;19(7):999-1010. doi: 10.1016/j.str.2011.03.022.

8.

Characterization of the reactivity determinants of a novel hairpin substrate of yeast RNase III.

Ghazal G, Elela SA.

J Mol Biol. 2006 Oct 20;363(2):332-44. Epub 2006 Aug 16.

PMID:
16962133
9.

Sequence dependence of substrate recognition and cleavage by yeast RNase III.

Lamontagne B, Ghazal G, Lebars I, Yoshizawa S, Fourmy D, Elela SA.

J Mol Biol. 2003 Apr 11;327(5):985-1000.

PMID:
12662924
10.
11.

Recognition of a conserved class of RNA tetraloops by Saccharomyces cerevisiae RNase III.

Chanfreau G, Buckle M, Jacquier A.

Proc Natl Acad Sci U S A. 2000 Mar 28;97(7):3142-7.

12.

Intrinsic dynamics of an extended hydrophobic core in the S. cerevisiae RNase III dsRBD contributes to recognition of specific RNA binding sites.

Hartman E, Wang Z, Zhang Q, Roy K, Chanfreau G, Feigon J.

J Mol Biol. 2013 Feb 8;425(3):546-62. doi: 10.1016/j.jmb.2012.11.025. Epub 2012 Nov 28.

15.
16.

Crystallographic and modeling studies of RNase III suggest a mechanism for double-stranded RNA cleavage.

Blaszczyk J, Tropea JE, Bubunenko M, Routzahn KM, Waugh DS, Court DL, Ji X.

Structure. 2001 Dec;9(12):1225-36.

17.

Solution structure of conserved AGNN tetraloops: insights into Rnt1p RNA processing.

Lebars I, Lamontagne B, Yoshizawa S, Aboul-Elela S, Fourmy D.

EMBO J. 2001 Dec 17;20(24):7250-8.

18.

Noncatalytic assembly of ribonuclease III with double-stranded RNA.

Blaszczyk J, Gan J, Tropea JE, Court DL, Waugh DS, Ji X.

Structure. 2004 Mar;12(3):457-66.

19.

Evaluation of the RNA determinants for bacterial and yeast RNase III binding and cleavage.

Lamontagne B, Elela SA.

J Biol Chem. 2004 Jan 16;279(3):2231-41. Epub 2003 Oct 27.

20.

Yeast ribonuclease III uses a network of multiple hydrogen bonds for RNA binding and cleavage.

Lavoie M, Abou Elela S.

Biochemistry. 2008 Aug 19;47(33):8514-26. doi: 10.1021/bi800238u. Epub 2008 Jul 23.

PMID:
18646867
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk