Format
Items per page
Sort by

Send to:

Choose Destination

Links from PubMed

Items: 1 to 20 of 110

1.

Novel aspects of glypican glycobiology.

Fransson LA, Belting M, Cheng F, Jönsson M, Mani K, Sandgren S.

Cell Mol Life Sci. 2004 May;61(9):1016-24. Review.

PMID:
15112050
2.

Prion, amyloid beta-derived Cu(II) ions, or free Zn(II) ions support S-nitroso-dependent autocleavage of glypican-1 heparan sulfate.

Mani K, Cheng F, Havsmark B, Jönsson M, Belting M, Fransson LA.

J Biol Chem. 2003 Oct 3;278(40):38956-65. Epub 2003 May 5.

3.

Nitric oxide-dependent processing of heparan sulfate in recycling S-nitrosylated glypican-1 takes place in caveolin-1-containing endosomes.

Cheng F, Mani K, van den Born J, Ding K, Belting M, Fransson LA.

J Biol Chem. 2002 Nov 15;277(46):44431-9. Epub 2002 Sep 10.

4.

Copper-dependent co-internalization of the prion protein and glypican-1.

Cheng F, Lindqvist J, Haigh CL, Brown DR, Mani K.

J Neurochem. 2006 Sep;98(5):1445-57.

5.

Copper-dependent autocleavage of glypican-1 heparan sulfate by nitric oxide derived from intrinsic nitrosothiols.

Ding K, Mani K, Cheng F, Belting M, Fransson LA.

J Biol Chem. 2002 Sep 6;277(36):33353-60. Epub 2002 Jun 25.

6.

Glypicans.

Fransson LA.

Int J Biochem Cell Biol. 2003 Feb;35(2):125-9. Review.

PMID:
12479862
7.

S-Nitrosylation of secreted recombinant human glypican-1.

Svensson G, Mani K.

Glycoconj J. 2009 Dec;26(9):1247-57. doi: 10.1007/s10719-009-9243-z. Epub .

PMID:
19479373
8.
9.

The amyloid precursor protein (APP) of Alzheimer disease and its paralog, APLP2, modulate the Cu/Zn-Nitric Oxide-catalyzed degradation of glypican-1 heparan sulfate in vivo.

Cappai R, Cheng F, Ciccotosto GD, Needham BE, Masters CL, Multhaup G, Fransson LA, Mani K.

J Biol Chem. 2005 Apr 8;280(14):13913-20. Epub 2005 Jan 27.

11.

Glypican-1 is a vehicle for polyamine uptake in mammalian cells: a pivital role for nitrosothiol-derived nitric oxide.

Belting M, Mani K, Jönsson M, Cheng F, Sandgren S, Jonsson S, Ding K, Delcros JG, Fransson LA.

J Biol Chem. 2003 Nov 21;278(47):47181-9. Epub 2003 Sep 11.

12.
13.

The heparan sulfate-specific epitope 10E4 is NO-sensitive and partly inaccessible in glypican-1.

Mani K, Cheng F, Sandgren S, Van Den Born J, Havsmark B, Ding K, Fransson LA.

Glycobiology. 2004 Jul;14(7):599-607. Epub 2004 Mar 24.

15.

Heparan sulfate degradation products can associate with oxidized proteins and proteasomes.

Mani K, Cheng F, Fransson LA.

J Biol Chem. 2007 Jul 27;282(30):21934-44. Epub 2007 May 31.

16.

Defective nitric oxide-dependent, deaminative cleavage of glypican-1 heparan sulfate in Niemann-Pick C1 fibroblasts.

Mani K, Cheng F, Fransson LA.

Glycobiology. 2006 Aug;16(8):711-8. Epub 2006 Apr 27.

17.

Constitutive and vitamin C-induced, NO-catalyzed release of heparan sulfate from recycling glypican-1 in late endosomes.

Mani K, Cheng F, Fransson LA.

Glycobiology. 2006 Dec;16(12):1251-61. Epub 2006 Sep 12.

18.

Non-conserved, S-nitrosylated cysteines in glypican-1 react with N-unsubstituted glucosamines in heparan sulfate and catalyze deaminative cleavage.

Cheng F, Svensson G, Fransson LÅ, Mani K.

Glycobiology. 2012 Nov;22(11):1480-6. doi: 10.1093/glycob/cws111. Epub 2012 Jul 16.

19.
20.

Mechanisms underlying preferential assembly of heparan sulfate on glypican-1.

Chen RL, Lander AD.

J Biol Chem. 2001 Mar 9;276(10):7507-17. Epub 2000 Dec 5.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk