Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 98

1.

Correlation between in vitro peptide binding profiles and cellular activities for estrogen receptor-modulating compounds.

Iannone MA, Simmons CA, Kadwell SH, Svoboda DL, Vanderwall DE, Deng SJ, Consler TG, Shearin J, Gray JG, Pearce KH.

Mol Endocrinol. 2004 May;18(5):1064-81. Epub 2004 Feb 19.

PMID:
14976226
2.

Analysis of ligand-dependent recruitment of coactivator peptides to estrogen receptor using fluorescence polarization.

Ozers MS, Ervin KM, Steffen CL, Fronczak JA, Lebakken CS, Carnahan KA, Lowery RG, Burke TJ.

Mol Endocrinol. 2005 Jan;19(1):25-34. Epub 2004 Sep 16.

PMID:
15375189
3.

Dissection of the LXXLL nuclear receptor-coactivator interaction motif using combinatorial peptide libraries: discovery of peptide antagonists of estrogen receptors alpha and beta.

Chang Cy, Norris JD, Grøn H, Paige LA, Hamilton PT, Kenan DJ, Fowlkes D, McDonnell DP.

Mol Cell Biol. 1999 Dec;19(12):8226-39.

4.

A homogeneous in vitro functional assay for estrogen receptors: coactivator recruitment.

Liu J, Knappenberger KS, Kack H, Andersson G, Nilsson E, Dartsch C, Scott CW.

Mol Endocrinol. 2003 Mar;17(3):346-55. Epub 2002 Dec 5.

PMID:
12554768
5.

The use of in vitro peptide binding profiles and in silico ligand-receptor interaction profiles to describe ligand-induced conformations of the retinoid X receptor alpha ligand-binding domain.

Folkertsma S, van Noort PI, de Heer A, Carati P, Brandt R, Visser A, Vriend G, de Vlieg J.

Mol Endocrinol. 2007 Jan;21(1):30-48. Epub 2006 Oct 12.

PMID:
17038419
6.

Capacity of type I and II ligands to confer to estrogen receptor alpha an appropriate conformation for the recruitment of coactivators containing a LxxLL motif-Relationship with the regulation of receptor level and ERE-dependent transcription in MCF-7 cells.

Bourgoin-Voillard S, Gallo D, Laïos I, Cleeren A, Bali LE, Jacquot Y, Nonclercq D, Laurent G, Tabet JC, Leclercq G.

Biochem Pharmacol. 2010 Mar 1;79(5):746-57. doi: 10.1016/j.bcp.2009.10.015. Epub 2009 Oct 29.

PMID:
19879249
7.

Discovery of novel quinoline-based estrogen receptor ligands using peptide interaction profiling.

Hoekstra WJ, Patel HS, Liang X, Blanc JB, Heyer DO, Willson TM, Iannone MA, Kadwell SH, Miller LA, Pearce KH, Simmons CA, Shearin J.

J Med Chem. 2005 Mar 24;48(6):2243-7.

PMID:
15771467
8.

Peptide antagonists of the human estrogen receptor.

Norris JD, Paige LA, Christensen DJ, Chang CY, Huacani MR, Fan D, Hamilton PT, Fowlkes DM, McDonnell DP.

Science. 1999 Jul 30;285(5428):744-6.

9.

Robust array-based coregulator binding assay predicting ERα-agonist potency and generating binding profiles reflecting ligand structure.

Aarts JM, Wang S, Houtman R, van Beuningen RM, Westerink WM, Van De Waart BJ, Rietjens IM, Bovee TF.

Chem Res Toxicol. 2013 Mar 18;26(3):336-46. doi: 10.1021/tx300463b. Epub 2013 Mar 6.

PMID:
23383871
11.

Differential biochemical and cellular actions of Premarin estrogens: distinct pharmacology of bazedoxifene-conjugated estrogens combination.

Berrodin TJ, Chang KC, Komm BS, Freedman LP, Nagpal S.

Mol Endocrinol. 2009 Jan;23(1):74-85. doi: 10.1210/me.2008-0366. Epub 2008 Nov 26.

PMID:
19036900
13.

Cooperative coactivation of estrogen receptor alpha in ZR-75 human breast cancer cells by SNURF and TATA-binding protein.

Saville B, Poukka H, Wormke M, Janne OA, Palvimo JJ, Stoner M, Samudio I, Safe S.

J Biol Chem. 2002 Jan 25;277(4):2485-97. Epub 2001 Nov 5.

14.

Antagonist-induced, activation function-2-independent estrogen receptor alpha phosphorylation.

Lipfert L, Fisher JE, Wei N, Scafonas A, Su Q, Yudkovitz J, Chen F, Warrier S, Birzin ET, Kim S, Chen HY, Tan Q, Schmidt A, Dininno F, Rohrer SP, Hammond ML, Rodan GA, Freedman LP, Reszka AA.

Mol Endocrinol. 2006 Mar;20(3):516-33. Epub 2005 Oct 13.

PMID:
16223974
15.

Estrogen receptor α/β-cofactor motif interactions; interplay of tyrosine 537/488 phosphorylation and LXXLL motifs.

Nguyen HD, Phan TT, Carraz M, Brunsveld L.

Mol Biosyst. 2012 Oct 30;8(12):3134-41. doi: 10.1039/c2mb25257k.

PMID:
22930062
16.

Synthetic 19-nortestosterone derivatives as estrogen receptor alpha subtype-selective ligands induce similar receptor conformational changes and steroid receptor coactivator recruitment than natural estrogens.

García-Becerra R, Borja-Cacho E, Cooney AJ, Smith CL, Lemus AE, Pérez-Palacios G, Larrea F.

J Steroid Biochem Mol Biol. 2006 May;99(2-3):108-14. Epub 2006 Apr 17.

PMID:
16616843
17.

Regulation of estrogen receptor α by histone methyltransferase SMYD2-mediated protein methylation.

Zhang X, Tanaka K, Yan J, Li J, Peng D, Jiang Y, Yang Z, Barton MC, Wen H, Shi X.

Proc Natl Acad Sci U S A. 2013 Oct 22;110(43):17284-9. doi: 10.1073/pnas.1307959110. Epub 2013 Oct 7.

18.

Protein arginine methyltransferase 6 enhances ligand-dependent and -independent activity of estrogen receptor α via distinct mechanisms.

Sun Y, Chung HH, Woo AR, Lin VC.

Biochim Biophys Acta. 2014 Sep;1843(9):2067-78. doi: 10.1016/j.bbamcr.2014.04.008. Epub 2014 Apr 15.

20.

Differential regulation of estrogen-inducible proteolysis and transcription by the estrogen receptor alpha N terminus.

Valley CC, Métivier R, Solodin NM, Fowler AM, Mashek MT, Hill L, Alarid ET.

Mol Cell Biol. 2005 Jul;25(13):5417-28.

Items per page

Supplemental Content

Write to the Help Desk