Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 295

1.

The structure of a universally employed enzyme: V8 protease from Staphylococcus aureus.

Prasad L, Leduc Y, Hayakawa K, Delbaere LT.

Acta Crystallogr D Biol Crystallogr. 2004 Feb;60(Pt 2):256-9. Epub 2004 Jan 23.

PMID:
14747701
2.

Functional and structural characterization of Spl proteases from Staphylococcus aureus.

Popowicz GM, Dubin G, Stec-Niemczyk J, Czarny A, Dubin A, Potempa J, Holak TA.

J Mol Biol. 2006 Apr 21;358(1):270-9. Epub 2006 Feb 13.

PMID:
16516230
3.

The structure of Staphylococcus aureus epidermolytic toxin A, an atypic serine protease, at 1.7 A resolution.

Cavarelli J, Prévost G, Bourguet W, Moulinier L, Chevrier B, Delagoutte B, Bilwes A, Mourey L, Rifai S, Piémont Y, Moras D.

Structure. 1997 Jun 15;5(6):813-24.

PMID:
9261066
4.

Enzymatic activity of the Staphylococcus aureus SplB serine protease is induced by substrates containing the sequence Trp-Glu-Leu-Gln.

Dubin G, Stec-Niemczyk J, Kisielewska M, Pustelny K, Popowicz GM, Bista M, Kantyka T, Boulware KT, Stennicke HR, Czarna A, Phopaisarn M, Daugherty PS, Thøgersen IB, Enghild JJ, Thornberry N, Dubin A, Potempa J.

J Mol Biol. 2008 May 30;379(2):343-56. doi: 10.1016/j.jmb.2008.03.059. Epub 2008 Apr 3.

PMID:
18448121
5.

Structural and functional characterization of SplA, an exclusively specific protease of Staphylococcus aureus.

Stec-Niemczyk J, Pustelny K, Kisielewska M, Bista M, Boulware KT, Stennicke HR, Thogersen IB, Daugherty PS, Enghild JJ, Baczynski K, Popowicz GM, Dubin A, Potempa J, Dubin G.

Biochem J. 2009 May 1;419(3):555-64. doi: 10.1042/BJ20081351.

PMID:
19175361
6.

A comparison of staphostatin B with standard mechanism serine protease inhibitors.

Filipek R, Potempa J, Bochtler M.

J Biol Chem. 2005 Apr 15;280(15):14669-74. Epub 2005 Jan 11.

7.

The active site of a lon protease from Methanococcus jannaschii distinctly differs from the canonical catalytic Dyad of Lon proteases.

Im YJ, Na Y, Kang GB, Rho SH, Kim MK, Lee JH, Chung CH, Eom SH.

J Biol Chem. 2004 Dec 17;279(51):53451-7. Epub 2004 Sep 28.

8.
9.

The structure of the superantigen exfoliative toxin A suggests a novel regulation as a serine protease.

Vath GM, Earhart CA, Rago JV, Kim MH, Bohach GA, Schlievert PM, Ohlendorf DH.

Biochemistry. 1997 Feb 18;36(7):1559-66.

PMID:
9048539
10.

Cleavage by protease from Staphylococcus aureus V8: an improvement in the sequence analysis of human hemoglobin variants.

Vasseur C, Galacteros F, Groff P, Wajcman H.

J Biochem Biophys Methods. 1991 Apr;22(3):195-205.

PMID:
1865052
11.

A glutamic acid specific serine protease utilizes a novel histidine triad in substrate binding.

Nienaber VL, Breddam K, Birktoft JJ.

Biochemistry. 1993 Nov 2;32(43):11469-75.

PMID:
8105890
12.

Free energy calculations show that acidic P1 variants undergo large pKa shifts upon binding to trypsin.

Brandsdal BO, Smalås AO, Aqvist J.

Proteins. 2006 Aug 15;64(3):740-8.

PMID:
16752417
13.

Phosphorylation of P'(1) serine inhibits peptide bond sensitivity to Staphylococcus aureus V8 protease.

Zambrano R, Briones E, Avila J, Ballesta JP.

Arch Biochem Biophys. 1999 Aug 1;368(1):207-9. No abstract available.

PMID:
10415129
15.

The primary structure and structural characteristics of Achromobacter lyticus protease I, a lysine-specific serine protease.

Tsunasawa S, Masaki T, Hirose M, Soejima M, Sakiyama F.

J Biol Chem. 1989 Mar 5;264(7):3832-9.

16.
17.

Evolutionary divergence of substrate specificity within the chymotrypsin-like serine protease fold.

Perona JJ, Craik CS.

J Biol Chem. 1997 Nov 28;272(48):29987-90. Review. No abstract available.

18.

Cloning and molecular modeling of duodenase with respect to evolution of substrate specificity within mammalian serine proteases that have lost a conserved active-site disulfide bond.

Zamolodchikova TS, Smirnova EV, Andrianov AN, Kashparov IV, Kotsareva OD, Sokolova EA, Ignatov KB, Pemberton AD.

Biochemistry (Mosc). 2005 Jun;70(6):672-84.

PMID:
16038610
19.

Flexibility of prolyl oligopeptidase: molecular dynamics and molecular framework analysis of the potential substrate pathways.

Fuxreiter M, Magyar C, Juhász T, Szeltner Z, Polgár L, Simon I.

Proteins. 2005 Aug 15;60(3):504-12.

PMID:
15971204
20.

The role of the serine protease active site in the mode of action of epidermolytic toxin of Staphylococcus aureus.

Redpath MB, Foster TJ, Bailey CJ.

FEMS Microbiol Lett. 1991 Jun 15;65(2):151-5.

PMID:
1884990
Items per page

Supplemental Content

Write to the Help Desk