Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 118

1.

Chemical, structural properties, and osteoconductive effectiveness of bone block derived from porcine cancellous bone.

Kim SH, Shin JW, Park SA, Kim YK, Park MS, Mok JM, Yang WI, Lee JW.

J Biomed Mater Res B Appl Biomater. 2004 Jan 15;68(1):69-74.

PMID:
14689498
[PubMed - indexed for MEDLINE]
2.

In vitro study of osteogenic differentiation of bone marrow stromal cells on heat-treated porcine trabecular bone blocks.

Park SA, Shin JW, Yang YI, Kim YK, Park KD, Lee JW, Jo IH, Kim YJ.

Biomaterials. 2004 Feb;25(3):527-35.

PMID:
14585702
[PubMed - indexed for MEDLINE]
3.

Nanoindentation study of interfaces between calcium phosphate and bone in an animal spinal fusion model.

Guo L, Guo X, Leng Y, Cheng JC, Zhang X.

J Biomed Mater Res. 2001 Mar 15;54(4):554-9.

PMID:
11426601
[PubMed - indexed for MEDLINE]
4.

A synthetic bone implant macroscopically identical to cancellous bone.

Tancred DC, McCormack BA, Carr AJ.

Biomaterials. 1998 Dec;19(24):2303-11.

PMID:
9884044
[PubMed - indexed for MEDLINE]
5.

Evaluation of biocompatible osteoconductive polymer as an orthopedic implant in dogs.

Trevor PB, Stevenson S, Carrig CB, Waldron DR, Smith MM.

J Am Vet Med Assoc. 1992 Jun 1;200(11):1651-60.

PMID:
1624340
[PubMed - indexed for MEDLINE]
6.

Advanced bioceramic composite for bone tissue engineering: design principles and structure-bioactivity relationship.

El-Ghannam AR.

J Biomed Mater Res A. 2004 Jun 1;69(3):490-501.

PMID:
15127396
[PubMed - indexed for MEDLINE]
7.

Early effect of platelet-rich plasma on bone healing in combination with an osteoconductive material in rat cranial defects.

Plachokova AS, van den Dolder J, Stoelinga PJ, Jansen JA.

Clin Oral Implants Res. 2007 Apr;18(2):244-51.

PMID:
17348890
[PubMed - indexed for MEDLINE]
8.

A unique protonated phosphate group in bone mineral not present in synthetic calcium phosphates. Identification by phosphorus-31 solid state NMR spectroscopy.

Wu Y, Glimcher MJ, Rey C, Ackerman JL.

J Mol Biol. 1994 Dec 9;244(4):423-35.

PMID:
7990131
[PubMed - indexed for MEDLINE]
9.

Clinical evaluations of OSTEON as a new alloplastic material in sinus bone grafting and its effect on bone healing.

Kim YK, Yun PY, Lim SC, Kim SG, Lee HJ, Ong JL.

J Biomed Mater Res B Appl Biomater. 2008 Jul;86(1):270-7.

PMID:
18161818
[PubMed - indexed for MEDLINE]
10.

Bioresorption behavior of tetracalcium phosphate-derived calcium phosphate cement implanted in femur of rabbits.

Tsai CH, Lin RM, Ju CP, Chern Lin JH.

Biomaterials. 2008 Mar;29(8):984-93.

PMID:
18096221
[PubMed - indexed for MEDLINE]
11.

Incorporation and biodegradation of hydroxyapatite-tricalcium phosphate implanted in large metaphyseal defects--an animal study.

Sunil P, Goel SC, Rastogi A, Aryya NC.

Indian J Exp Biol. 2008 Dec;46(12):836-41.

PMID:
19245181
[PubMed - indexed for MEDLINE]
12.

Characterization of the mechanical and ultrastructural properties of heat-treated cortical bone for use as a bone substitute.

Catanese J 3rd, Featherstone JD, Keaveny TM.

J Biomed Mater Res. 1999 Jun 15;45(4):327-36.

PMID:
10321705
[PubMed - indexed for MEDLINE]
13.

Is hydroxyapatite cement an alternative for allograft bone chips in bone grafting procedures? A mechanical and histological study in a rabbit cancellous bone defect model.

Voor MJ, Arts JJ, Klein SA, Walschot LH, Verdonschot N, Buma P.

J Biomed Mater Res B Appl Biomater. 2004 Nov 15;71(2):398-407.

PMID:
15389506
[PubMed - indexed for MEDLINE]
14.

The use of hydroxyapatite and autogenous cancellous bone grafts to repair bone defects in rats.

Silva RV, Camilli JA, Bertran CA, Moreira NH.

Int J Oral Maxillofac Surg. 2005 Mar;34(2):178-84.

PMID:
15695048
[PubMed - indexed for MEDLINE]
15.

Increased new bone formation with a surface magnesium-incorporated deproteinized porcine bone substitute in rabbit calvarial defects.

Park JW, Ko HJ, Jang JH, Kang H, Suh JY.

J Biomed Mater Res A. 2012 Apr;100(4):834-40. doi: 10.1002/jbm.a.34017. Epub 2012 Jan 12.

PMID:
22241729
[PubMed - indexed for MEDLINE]
16.

Correlating crystallinity and reactivity in an alpha-tricalcium phosphate.

Camiré CL, Gbureck U, Hirsiger W, Bohner M.

Biomaterials. 2005 Jun;26(16):2787-94.

PMID:
15603774
[PubMed - indexed for MEDLINE]
17.

Nano-mechanics of bone and bioactive bone cement interfaces in a load-bearing model.

Ni GX, Choy YS, Lu WW, Ngan AH, Chiu KY, Li ZY, Tang B, Luk KD.

Biomaterials. 2006 Mar;27(9):1963-70. Epub 2005 Oct 13.

PMID:
16226309
[PubMed - indexed for MEDLINE]
18.

A new in vivo screening model for posterior spinal bone formation: comparison of ten calcium phosphate ceramic material treatments.

Wilson CE, Kruyt MC, de Bruijn JD, van Blitterswijk CA, Oner FC, Verbout AJ, Dhert WJ.

Biomaterials. 2006 Jan;27(3):302-14. Epub 2005 Aug 18.

PMID:
16111745
[PubMed - indexed for MEDLINE]
19.

[Spinal fusion of lumbar intertransverse process by using tissue engineered bone with xenogeneic deproteinized cancellous bone as scaffold].

Gao C, Li Q, Jian Y.

Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2007 Feb;21(2):115-9. Chinese.

PMID:
17357455
[PubMed - indexed for MEDLINE]
20.

Peripheral quantitative computed tomography in evaluation of bioactive glass incorporation with bone.

Välimäki VV, Moritz N, Yrjans JJ, Dalstra M, Aro HT.

Biomaterials. 2005 Nov;26(33):6693-703.

PMID:
15941582
[PubMed - indexed for MEDLINE]

Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk