Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 131

Similar articles for PubMed (Select 14617147)

1.

Cell cycle- and age-dependent activation of Sod1p drives the formation of stress resistant cell subpopulations within clonal yeast cultures.

Sumner ER, Avery AM, Houghton JE, Robins RA, Avery SV.

Mol Microbiol. 2003 Nov;50(3):857-70.

PMID:
14617147
2.
3.

Phenotypic heterogeneity can enhance rare-cell survival in 'stress-sensitive' yeast populations.

Bishop AL, Rab FA, Sumner ER, Avery SV.

Mol Microbiol. 2007 Jan;63(2):507-20. Epub 2006 Dec 14.

PMID:
17176259
4.

The role of PDR13 in tolerance to high copper stress in budding yeast.

Kim DY, Song WY, Yang YY, Lee Y.

FEBS Lett. 2001 Nov 9;508(1):99-102.

5.

Yeast and mammalian metallothioneins functionally substitute for yeast copper-zinc superoxide dismutase.

Tamai KT, Gralla EB, Ellerby LM, Valentine JS, Thiele DJ.

Proc Natl Acad Sci U S A. 1993 Sep 1;90(17):8013-7.

7.

Activation and induction by copper of Cu/Zn superoxide dismutase in Saccharomyces cerevisiae. Presence of an inactive proenzyme in anaerobic yeast.

Galiazzo F, Ciriolo MR, Carrì MT, Civitareale P, Marcocci L, Marmocchi F, Rotilio G.

Eur J Biochem. 1991 Mar 28;196(3):545-9.

8.
9.

Cmc1p is a conserved mitochondrial twin CX9C protein involved in cytochrome c oxidase biogenesis.

Horn D, Al-Ali H, Barrientos A.

Mol Cell Biol. 2008 Jul;28(13):4354-64. doi: 10.1128/MCB.01920-07. Epub 2008 Apr 28.

10.

Oxidative stress and iron are implicated in fragmenting vacuoles of Saccharomyces cerevisiae lacking Cu,Zn-superoxide dismutase.

Corson LB, Folmer J, Strain JJ, Culotta VC, Cleveland DW.

J Biol Chem. 1999 Sep 24;274(39):27590-6.

11.

Cu, Zn superoxide dismutase and NADP(H) homeostasis are required for tolerance of endoplasmic reticulum stress in Saccharomyces cerevisiae.

Tan SX, Teo M, Lam YT, Dawes IW, Perrone GG.

Mol Biol Cell. 2009 Mar;20(5):1493-508. doi: 10.1091/mbc.E08-07-0697. Epub 2009 Jan 7.

12.

Distribution of 64Cu in Saccharomyces cerevisiae: cellular locale and metabolism.

Lin CM, Crawford BF, Kosman DJ.

J Gen Microbiol. 1993 Jul;139(7):1605-15.

13.

Mutations in Saccharomyces cerevisiae iron-sulfur cluster assembly genes and oxidative stress relevant to Cu,Zn superoxide dismutase.

Jensen LT, Sanchez RJ, Srinivasan C, Valentine JS, Culotta VC.

J Biol Chem. 2004 Jul 16;279(29):29938-43. Epub 2004 Apr 23.

14.

A physiological role for Saccharomyces cerevisiae copper/zinc superoxide dismutase in copper buffering.

Culotta VC, Joh HD, Lin SJ, Slekar KH, Strain J.

J Biol Chem. 1995 Dec 15;270(50):29991-7.

15.

Oxidative protein damage causes chromium toxicity in yeast.

Sumner ER, Shanmuganathan A, Sideri TC, Willetts SA, Houghton JE, Avery SV.

Microbiology. 2005 Jun;151(Pt 6):1939-48.

16.

Copper/zinc-Superoxide dismutase is required for oxytetracycline resistance of Saccharomyces cerevisiae.

Avery SV, Malkapuram S, Mateus C, Babb KS.

J Bacteriol. 2000 Jan;182(1):76-80.

17.

Cu,Zn superoxide dismutase and copper deprivation and toxicity in Saccharomyces cerevisiae.

Greco MA, Hrab DI, Magner W, Kosman DJ.

J Bacteriol. 1990 Jan;172(1):317-25.

18.

Evidence for a novel role of copper-zinc superoxide dismutase in zinc metabolism.

Wei JP, Srinivasan C, Han H, Valentine JS, Gralla EB.

J Biol Chem. 2001 Nov 30;276(48):44798-803. Epub 2001 Oct 1.

19.

Cu,Zn-superoxide dismutase of Saccharomyces cerevisiae is required for resistance to hyperosmosis.

Garay-Arroyo A, Lledías F, Hansberg W, Covarrubias AA.

FEBS Lett. 2003 Mar 27;539(1-3):68-72.

PMID:
12650928
20.

Copper and manganese induce yeast apoptosis via different pathways.

Liang Q, Zhou B.

Mol Biol Cell. 2007 Dec;18(12):4741-9. Epub 2007 Sep 19.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk