Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 154

Similar articles for PubMed (Select 1371284)


Human lipoprotein lipase. Analysis of the catalytic triad by site-directed mutagenesis of Ser-132, Asp-156, and His-241.

Emmerich J, Beg OU, Peterson J, Previato L, Brunzell JD, Brewer HB Jr, Santamarina-Fojo S.

J Biol Chem. 1992 Feb 25;267(6):4161-5.


Human lipoprotein lipase: the loop covering the catalytic site is essential for interaction with lipid substrates.

Dugi KA, Dichek HL, Talley GD, Brewer HB Jr, Santamarina-Fojo S.

J Biol Chem. 1992 Dec 15;267(35):25086-91.


Functional topology of a surface loop shielding the catalytic center in lipoprotein lipase.

Faustinella F, Smith LC, Chan L.

Biochemistry. 1992 Aug 18;31(32):7219-23.


Chimeras of hepatic lipase and lipoprotein lipase. Domain localization of enzyme-specific properties.

Davis RC, Wong H, Nikazy J, Wang K, Han Q, Schotz MC.

J Biol Chem. 1992 Oct 25;267(30):21499-504.


Human hepatic and lipoprotein lipase: the loop covering the catalytic site mediates lipase substrate specificity.

Dugi KA, Dichek HL, Santamarina-Fojo S.

J Biol Chem. 1995 Oct 27;270(43):25396-401.


Lipoprotein lipase and hepatic lipase: the role of asparagine-linked glycosylation in the expression of a functional enzyme.

Ben-Zeev O, Stahnke G, Liu G, Davis RC, Doolittle MH.

J Lipid Res. 1994 Sep;35(9):1511-23.


Functional characterization of a chimeric lipase genetically engineered from human lipoprotein lipase and human hepatic lipase.

Dichek HL, Parrott C, Ronan R, Brunzell JD, Brewer HB Jr, Santamarina-Fojo S.

J Lipid Res. 1993 Aug;34(8):1393-40.


Effects of substitutions of glycine and asparagine for serine132 on activity and binding of human lipoprotein lipase to very low density lipoproteins.

Tashiro J, Kobayashi J, Shirai K, Saito Y, Fukamachi I, Hashimoto H, Nishida T, Shibui T, Morimoto Y, Yoshida S.

FEBS Lett. 1992 Feb 17;298(1):36-8.


Identification of the histidine and aspartic acid residues essential for enzymatic activity of a family I.3 lipase by site-directed mutagenesis.

Kwon HJ, Amada K, Haruki M, Morikawa M, Kanaya S.

FEBS Lett. 2000 Oct 20;483(2-3):139-42. Erratum in: FEBS Lett 2001 May 25;497(2-3):174. Hyun-Ju, K [corrected to Kwon, HJ].


Homozygosity for two point mutations in the lipoprotein lipase (LPL) gene in a patient with familial LPL deficiency: LPL(Asp9-->Asn, Tyr262-->His).

Rouis M, Lohse P, Dugi KA, Lohse P, Beg OU, Ronan R, Talley GD, Brunzell JD, Santamarina-Fojo S.

J Lipid Res. 1996 Mar;37(3):651-61.


Structural features in lipoprotein lipase necessary for the mediation of lipoprotein uptake into cells.

Krapp A, Zhang H, Ginzinger D, Liu MS, Lindberg A, Olivecrona G, Hayden MR, Beisiegel U.

J Lipid Res. 1995 Nov;36(11):2362-73.


Lipoprotein lipase domain function.

Wong H, Davis RC, Thuren T, Goers JW, Nikazy J, Waite M, Schotz MC.

J Biol Chem. 1994 Apr 8;269(14):10319-23.


Identification of the catalytic residues of alpha-amino acid ester hydrolase from Acetobacter turbidans by labeling and site-directed mutagenesis.

Polderman-Tijmes JJ, Jekel PA, Jeronimus-Stratingh CM, Bruins AP, Van Der Laan JM, Sonke T, Janssen DB.

J Biol Chem. 2002 Aug 9;277(32):28474-82. Epub 2002 May 14.


Binding of hepatic lipase to heparin. Identification of specific heparin-binding residues in two distinct positive charge clusters.

Sendak RA, Berryman DE, Gellman G, Melford K, Bensadoun A.

J Lipid Res. 2000 Feb;41(2):260-8.


The mutant Asn291-->Ser human lipoprotein lipase is associated with reduced catalytic activity and does not influence binding to heparin.

Buscà R, Peinado J, Vilella E, Auwerx J, Deeb SS, Vilaró S, Reina M.

FEBS Lett. 1995 Jul 3;367(3):257-62.


Lipoprotein lipase: structure, function and mechanism of action.

Santamarina-Fojo S, Brewer HB Jr.

Int J Clin Lab Res. 1994;24(3):143-7. Review.

Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk