Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 165

Similar articles for PubMed (Select 12867442)

1.

Gene expression analysis of energy metabolism mutants of Desulfovibrio vulgaris Hildenborough indicates an important role for alcohol dehydrogenase.

Haveman SA, Brunelle V, Voordouw JK, Voordouw G, Heidelberg JF, Rabus R.

J Bacteriol. 2003 Aug;185(15):4345-53.

2.

A functionally critical single nucleotide polymorphism in the gene encoding the membrane-bound alcohol dehydrogenase found in ethanol oxidation-deficient Gluconobacter thailandicus.

Charoenyingcharoen P, Matsutani M, Yakushi T, Theeragool G, Yukphan P, Matsushita K.

Gene. 2015 Aug 10;567(2):201-7. doi: 10.1016/j.gene.2015.04.080. Epub 2015 May 2.

PMID:
25943635
3.

Growth of the obligate anaerobe Desulfovibrio vulgaris Hildenborough under continuous low oxygen concentration sparging: impact of the membrane-bound oxygen reductases.

Ramel F, Brasseur G, Pieulle L, Valette O, Hirschler-Réa A, Fardeau ML, Dolla A.

PLoS One. 2015 Apr 2;10(4):e0123455. doi: 10.1371/journal.pone.0123455. eCollection 2015.

4.

Nutritional stress induces exchange of cell material and energetic coupling between bacterial species.

Benomar S, Ranava D, Cárdenas ML, Trably E, Rafrafi Y, Ducret A, Hamelin J, Lojou E, Steyer JP, Giudici-Orticoni MT.

Nat Commun. 2015 Feb 23;6:6283. doi: 10.1038/ncomms7283.

PMID:
25704114
5.

Genetic basis for metabolism of methylated sulfur compounds in Methanosarcina species.

Fu H, Metcalf WW.

J Bacteriol. 2015 Apr;197(8):1515-24. doi: 10.1128/JB.02605-14. Epub 2015 Feb 17.

PMID:
25691524
6.

Syntrophic growth of Desulfovibrio alaskensis requires genes for H2 and formate metabolism as well as those for flagellum and biofilm formation.

Krumholz LR, Bradstock P, Sheik CS, Diao Y, Gazioglu O, Gorby Y, McInerney MJ.

Appl Environ Microbiol. 2015 Apr;81(7):2339-48. doi: 10.1128/AEM.03358-14. Epub 2015 Jan 23.

PMID:
25616787
7.
8.

The genetic basis of energy conservation in the sulfate-reducing bacterium Desulfovibrio alaskensis G20.

Price MN, Ray J, Wetmore KM, Kuehl JV, Bauer S, Deutschbauer AM, Arkin AP.

Front Microbiol. 2014 Oct 31;5:577. doi: 10.3389/fmicb.2014.00577. eCollection 2014.

9.

The FlxABCD-HdrABC proteins correspond to a novel NADH dehydrogenase/heterodisulfide reductase widespread in anaerobic bacteria and involved in ethanol metabolism in Desulfovibrio vulgaris Hildenborough.

Ramos AR, Grein F, Oliveira GP, Venceslau SS, Keller KL, Wall JD, Pereira IA.

Environ Microbiol. 2014 Nov 3. doi: 10.1111/1462-2920.12689. [Epub ahead of print]

PMID:
25367508
10.

Rex (encoded by DVU_0916) in Desulfovibrio vulgaris Hildenborough is a repressor of sulfate adenylyl transferase and is regulated by NADH.

Christensen GA, Zane GM, Kazakov AE, Li X, Rodionov DA, Novichkov PS, Dubchak I, Arkin AP, Wall JD.

J Bacteriol. 2015 Jan 1;197(1):29-39. doi: 10.1128/JB.02083-14. Epub 2014 Oct 13.

11.

CO2 exposure at pressure impacts metabolism and stress responses in the model sulfate-reducing bacterium Desulfovibrio vulgaris strain Hildenborough.

Wilkins MJ, Hoyt DW, Marshall MJ, Alderson PA, Plymale AE, Markillie LM, Tucker AE, Walter ED, Linggi BE, Dohnalkova AC, Taylor RC.

Front Microbiol. 2014 Sep 25;5:507. doi: 10.3389/fmicb.2014.00507. eCollection 2014.

12.

Erosion of functional independence early in the evolution of a microbial mutualism.

Hillesland KL, Lim S, Flowers JJ, Turkarslan S, Pinel N, Zane GM, Elliott N, Qin Y, Wu L, Baliga NS, Zhou J, Wall JD, Stahl DA.

Proc Natl Acad Sci U S A. 2014 Oct 14;111(41):14822-7. doi: 10.1073/pnas.1407986111. Epub 2014 Sep 29.

13.

Transcriptomics reveal several gene expression patterns in the piezophile Desulfovibrio hydrothermalis in response to hydrostatic pressure.

Amrani A, Bergon A, Holota H, Tamburini C, Garel M, Ollivier B, Imbert J, Dolla A, Pradel N.

PLoS One. 2014 Sep 12;9(9):e106831. doi: 10.1371/journal.pone.0106831. eCollection 2014.

14.

DNA-affinity-purified chip (DAP-chip) method to determine gene targets for bacterial two component regulatory systems.

Rajeev L, Luning EG, Mukhopadhyay A.

J Vis Exp. 2014 Jul 21;(89). doi: 10.3791/51715.

PMID:
25079303
15.

The growth and survival of Mycobacterium smegmatis is enhanced by co-metabolism of atmospheric H2.

Greening C, Villas-Bôas SG, Robson JR, Berney M, Cook GM.

PLoS One. 2014 Jul 24;9(7):e103034. doi: 10.1371/journal.pone.0103034. eCollection 2014.

16.

The role of acetogens in microbially influenced corrosion of steel.

Mand J, Park HS, Jack TR, Voordouw G.

Front Microbiol. 2014 Jun 3;5:268. doi: 10.3389/fmicb.2014.00268. eCollection 2014.

17.

Growth of Desulfovibrio vulgaris when respiring U(VI) and characterization of biogenic uraninite.

Zhou C, Vannela R, Hyun SP, Hayes KF, Rittmann BE.

Environ Sci Technol. 2014 Jun 17;48(12):6928-37. doi: 10.1021/es501404h. Epub 2014 Jun 6.

PMID:
24871825
18.

Functional genomics with a comprehensive library of transposon mutants for the sulfate-reducing bacterium Desulfovibrio alaskensis G20.

Kuehl JV, Price MN, Ray J, Wetmore KM, Esquivel Z, Kazakov AE, Nguyen M, Kuehn R, Davis RW, Hazen TC, Arkin AP, Deutschbauer A.

MBio. 2014 May 27;5(3):e01041-14. doi: 10.1128/mBio.01041-14.

19.

Genetic basis for nitrate resistance in Desulfovibrio strains.

Korte HL, Fels SR, Christensen GA, Price MN, Kuehl JV, Zane GM, Deutschbauer AM, Arkin AP, Wall JD.

Front Microbiol. 2014 Apr 21;5:153. doi: 10.3389/fmicb.2014.00153. eCollection 2014.

20.

Effect of growth conditions on microbial activity and iron-sulfide production by Desulfovibrio vulgaris.

Zhou C, Vannela R, Hayes KF, Rittmann BE.

J Hazard Mater. 2014 May 15;272:28-35. doi: 10.1016/j.jhazmat.2014.02.046. Epub 2014 Mar 13.

PMID:
24675611
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk