Format
Items per page
Sort by

Send to:

Choose Destination

Links from PubMed

Items: 1 to 20 of 170

1.

Increased susceptibility of striatal mitochondria to calcium-induced permeability transition.

Brustovetsky N, Brustovetsky T, Purl KJ, Capano M, Crompton M, Dubinsky JM.

J Neurosci. 2003 Jun 15;23(12):4858-67.

2.

Limitations of cyclosporin A inhibition of the permeability transition in CNS mitochondria.

Brustovetsky N, Dubinsky JM.

J Neurosci. 2000 Nov 15;20(22):8229-37.

3.

Heterogeneity of the calcium-induced permeability transition in isolated non-synaptic brain mitochondria.

Kristián T, Weatherby TM, Bates TE, Fiskum G.

J Neurochem. 2002 Dec;83(6):1297-308.

4.

Brain-derived respiring mitochondria exhibit homogeneous, complete and cyclosporin-sensitive permeability transition.

Hansson MJ, Månsson R, Mattiasson G, Ohlsson J, Karlsson J, Keep MF, Elmér E.

J Neurochem. 2004 May;89(3):715-29.

5.

Mitochondrial permeability transition in neuronal damage promoted by Ca2+ and respiratory chain complex II inhibition.

Maciel EN, Kowaltowski AJ, Schwalm FD, Rodrigues JM, Souza DO, Vercesi AE, Wajner M, Castilho RF.

J Neurochem. 2004 Sep;90(5):1025-35.

6.

3-nitropropionic acid-induced mitochondrial permeability transition: comparative study of mitochondria from different tissues and brain regions.

Mirandola SR, Melo DR, Saito A, Castilho RF.

J Neurosci Res. 2010 Feb 15;88(3):630-9. doi: 10.1002/jnr.22239.

PMID:
19795369
7.
8.

Age-dependent changes in the calcium sensitivity of striatal mitochondria in mouse models of Huntington's Disease.

Brustovetsky N, LaFrance R, Purl KJ, Brustovetsky T, Keene CD, Low WC, Dubinsky JM.

J Neurochem. 2005 Jun;93(6):1361-70.

9.

Dual responses of CNS mitochondria to elevated calcium.

Brustovetsky N, Dubinsky JM.

J Neurosci. 2000 Jan 1;20(1):103-13.

10.

Cyclosporin A and Bcl-2 do not inhibit quinolinic acid-induced striatal excitotoxicity in rodents.

Maciel EN, Kaminski Schierle GS, Hansson O, Brundin P, Castilho RF.

Exp Neurol. 2003 Oct;183(2):430-7.

PMID:
14552883
11.

The permeability transition pore induced under anaerobic conditions in mitochondria energized with ATP.

Kuzminova AE, Zhuravlyova AV, Vyssokikh MYu, Zorova LD, Krasnikov BF, Zorov DB.

FEBS Lett. 1998 Sep 4;434(3):313-6.

12.

In situ mitochondrial Ca2+ buffering differences of intact neurons and astrocytes from cortex and striatum.

Oliveira JM, Gonçalves J.

J Biol Chem. 2009 Feb 20;284(8):5010-20. doi: 10.1074/jbc.M807459200. Epub 2008 Dec 22.

13.

Membrane potential-related effect of calcium on reactive oxygen species generation in isolated brain mitochondria.

Komary Z, Tretter L, Adam-Vizi V.

Biochim Biophys Acta. 2010 Jun-Jul;1797(6-7):922-8. doi: 10.1016/j.bbabio.2010.03.010. Epub 2010 Mar 15.

14.
15.

Ca2+ induces a cyclosporin A-insensitive permeability transition pore in isolated potato tuber mitochondria mediated by reactive oxygen species.

Fortes F, Castilho RF, Catisti R, Carnieri EG, Vercesi AE.

J Bioenerg Biomembr. 2001 Feb;33(1):43-51.

PMID:
11460925
16.

Mitochondrial-dependent Ca2+ handling in Huntington's disease striatal cells: effect of histone deacetylase inhibitors.

Oliveira JM, Chen S, Almeida S, Riley R, Gonçalves J, Oliveira CR, Hayden MR, Nicholls DG, Ellerby LM, Rego AC.

J Neurosci. 2006 Oct 25;26(43):11174-86.

17.

Cyclosporin A-insensitive permeability transition in brain mitochondria: inhibition by 2-aminoethoxydiphenyl borate.

Chinopoulos C, Starkov AA, Fiskum G.

J Biol Chem. 2003 Jul 25;278(30):27382-9. Epub 2003 May 15.

18.
19.
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk