Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 166

Similar articles for PubMed (Select 12032311)

1.

ERK2 enters the nucleus by a carrier-independent mechanism.

Whitehurst AW, Wilsbacher JL, You Y, Luby-Phelps K, Moore MS, Cobb MH.

Proc Natl Acad Sci U S A. 2002 May 28;99(11):7496-501.

2.

The death effector domain protein PEA-15 prevents nuclear entry of ERK2 by inhibiting required interactions.

Whitehurst AW, Robinson FL, Moore MS, Cobb MH.

J Biol Chem. 2004 Mar 26;279(13):12840-7. Epub 2004 Jan 5.

4.

Identification of a C-terminal region that is required for the nuclear translocation of ERK2 by passive diffusion.

Shibayama S, Shibata-Seita R, Miura K, Kirino Y, Takishima K.

J Biol Chem. 2002 Oct 4;277(40):37777-82. Epub 2002 Jul 30.

5.

Reconstitution of the nuclear transport of the MAP kinase ERK2.

Jivan A, Ranganathan A, Cobb MH.

Methods Mol Biol. 2010;661:273-85. doi: 10.1007/978-1-60761-795-2_16.

PMID:
20811989
6.

The nuclear localization of ERK2 occurs by mechanisms both independent of and dependent on energy.

Ranganathan A, Yazicioglu MN, Cobb MH.

J Biol Chem. 2006 Jun 9;281(23):15645-52. Epub 2006 Apr 4.

7.

Differential nucleocytoplasmic shuttling of beta-arrestins. Characterization of a leucine-rich nuclear export signal in beta-arrestin2.

Scott MG, Le Rouzic E, PĂ©rianin A, Pierotti V, Enslen H, Benichou S, Marullo S, Benmerah A.

J Biol Chem. 2002 Oct 4;277(40):37693-701. Epub 2002 Aug 6.

8.

Examining the mechanism of Erk nuclear translocation using green fluorescent protein.

Horgan AM, Stork PJ.

Exp Cell Res. 2003 May 1;285(2):208-20.

PMID:
12706116
9.
10.
11.

Extracellular signal-regulated kinase 2 (ERK2) phosphorylation sites and docking domain on the nuclear pore complex protein Tpr cooperatively regulate ERK2-Tpr interaction.

Vomastek T, Iwanicki MP, Burack WR, Tiwari D, Kumar D, Parsons JT, Weber MJ, Nandicoori VK.

Mol Cell Biol. 2008 Nov;28(22):6954-66. doi: 10.1128/MCB.00925-08. Epub 2008 Sep 15.

12.

An N-terminal segment of the active component of the bacterial genotoxin cytolethal distending toxin B (CDTB) directs CDTB into the nucleus.

Nishikubo S, Ohara M, Ueno Y, Ikura M, Kurihara H, Komatsuzawa H, Oswald E, Sugai M.

J Biol Chem. 2003 Dec 12;278(50):50671-81. Epub 2003 Aug 28.

13.

In vivo nuclear transport kinetics in Saccharomyces cerevisiae: a role for heat shock protein 70 during targeting and translocation.

Shulga N, Roberts P, Gu Z, Spitz L, Tabb MM, Nomura M, Goldfarb DS.

J Cell Biol. 1996 Oct;135(2):329-39.

14.

Identification of a cytoplasmic-retention sequence in ERK2.

Rubinfeld H, Hanoch T, Seger R.

J Biol Chem. 1999 Oct 22;274(43):30349-52.

15.

Model system to study classical nuclear export signals.

Kanwal C, Li H, Lim CS.

AAPS PharmSci. 2002;4(3):E18.

16.

Nucleocytoplasmic shuttling factors including Ran and CRM1 mediate nuclear export of NFAT In vitro.

Kehlenbach RH, Dickmanns A, Gerace L.

J Cell Biol. 1998 May 18;141(4):863-74.

17.
18.

Epidermal growth factor receptor and protein kinase C signaling to ERK2: spatiotemporal regulation of ERK2 by dual specificity phosphatases.

Caunt CJ, Rivers CA, Conway-Campbell BL, Norman MR, McArdle CA.

J Biol Chem. 2008 Mar 7;283(10):6241-52. doi: 10.1074/jbc.M706624200. Epub 2008 Jan 3.

19.

Regulated nucleo/cytoplasmic exchange of HOG1 MAPK requires the importin beta homologs NMD5 and XPO1.

Ferrigno P, Posas F, Koepp D, Saito H, Silver PA.

EMBO J. 1998 Oct 1;17(19):5606-14.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk