Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 161

Similar articles for PubMed (Select 11912217)

1.

Structure of formamidopyrimidine-DNA glycosylase covalently complexed to DNA.

Gilboa R, Zharkov DO, Golan G, Fernandes AS, Gerchman SE, Matz E, Kycia JH, Grollman AP, Shoham G.

J Biol Chem. 2002 May 31;277(22):19811-6. Epub 2002 Mar 23.

2.

Zinc finger oxidation of Fpg/Nei DNA glycosylases by 2-thioxanthine: biochemical and X-ray structural characterization.

Biela A, Coste F, Culard F, Guerin M, Goffinont S, Gasteiger K, Cieśla J, Winczura A, Kazimierczuk Z, Gasparutto D, Carell T, Tudek B, Castaing B.

Nucleic Acids Res. 2014;42(16):10748-61. doi: 10.1093/nar/gku613. Epub 2014 Aug 20.

3.

Structural basis for hydroxymethylcytosine recognition by the SRA domain of UHRF2.

Zhou T, Xiong J, Wang M, Yang N, Wong J, Zhu B, Xu RM.

Mol Cell. 2014 Jun 5;54(5):879-86. doi: 10.1016/j.molcel.2014.04.003. Epub 2014 May 8.

4.

Depurination of N7-methylguanine by DNA glycosylase AlkD is dependent on the DNA backbone.

Rubinson EH, Christov PP, Eichman BF.

Biochemistry. 2013 Oct 22;52(42):7363-5. doi: 10.1021/bi401195r. Epub 2013 Oct 7.

5.

Conformational freedom in tight binding enzymatic transition-state analogues.

Motley MW, Schramm VL, Schwartz SD.

J Phys Chem B. 2013 Aug 22;117(33):9591-7. doi: 10.1021/jp4030443. Epub 2013 Aug 8.

6.

Structural characterization of a mouse ortholog of human NEIL3 with a marked preference for single-stranded DNA.

Liu M, Imamura K, Averill AM, Wallace SS, Doublié S.

Structure. 2013 Feb 5;21(2):247-56. doi: 10.1016/j.str.2012.12.008. Epub 2013 Jan 9.

7.

Single Qdot-labeled glycosylase molecules use a wedge amino acid to probe for lesions while scanning along DNA.

Dunn AR, Kad NM, Nelson SR, Warshaw DM, Wallace SS.

Nucleic Acids Res. 2011 Sep 1;39(17):7487-98. doi: 10.1093/nar/gkr459. Epub 2011 Jun 11.

8.

5-Hydroxy-5-methylhydantoin DNA lesion, a molecular trap for DNA glycosylases.

Le Bihan YV, Angeles Izquierdo M, Coste F, Aller P, Culard F, Gehrke TH, Essalhi K, Carell T, Castaing B.

Nucleic Acids Res. 2011 Aug;39(14):6277-90. doi: 10.1093/nar/gkr215. Epub 2011 Apr 12.

9.

Role of Met-542 as a guide for the conformational changes of Phe-601 that occur during the reaction of β-galactosidase (Escherichia coli).

Dugdale ML, Dymianiw DL, Minhas BK, D'Angelo I, Huber RE.

Biochem Cell Biol. 2010 Oct;88(5):861-9. doi: 10.1139/O10-009.

PMID:
20921997
10.

Active site plasticity revealed from the structure of the enterobacterial N-ribohydrolase RihA bound to a competitive inhibitor.

Garau G, Muzzolini L, Tornaghi P, Degano M.

BMC Struct Biol. 2010 Jun 8;10:14. doi: 10.1186/1472-6807-10-14.

11.

DNA repair: how MutM finds the needle in a haystack.

Jiricny J.

Curr Biol. 2010 Feb 23;20(4):R145-7. doi: 10.1016/j.cub.2009.12.046. Review.

12.

Mechanism of substrate recognition and transport by an amino acid antiporter.

Gao X, Zhou L, Jiao X, Lu F, Yan C, Zeng X, Wang J, Shi Y.

Nature. 2010 Feb 11;463(7282):828-32. doi: 10.1038/nature08741. Epub 2010 Jan 20.

PMID:
20090677
13.

Reversible chemical step and rate-limiting enzyme regeneration in the reaction catalyzed by formamidopyrimidine-DNA glycosylase.

Kuznetsov NA, Zharkov DO, Koval VV, Buckle M, Fedorova OS.

Biochemistry. 2009 Dec 8;48(48):11335-43. doi: 10.1021/bi901100b.

PMID:
19835417
14.

Real-time studies of conformational dynamics of the repair enzyme E. coli formamidopyrimidine-DNA glycosylase and its DNA complexes during catalytic cycle.

Koval VV, Kuznetsov NA, Ishchenko AA, Saparbaev MK, Fedorova OS.

Mutat Res. 2010 Mar 1;685(1-2):3-10. doi: 10.1016/j.mrfmmm.2009.08.018. Epub 2009 Sep 12. Review.

PMID:
19751748
15.

Structural characterization of a viral NEIL1 ortholog unliganded and bound to abasic site-containing DNA.

Imamura K, Wallace SS, Doublié S.

J Biol Chem. 2009 Sep 18;284(38):26174-83. doi: 10.1074/jbc.M109.021907. Epub 2009 Jul 22.

16.

Human Nei-like protein NEIL3 has AP lyase activity specific for single-stranded DNA and confers oxidative stress resistance in Escherichia coli mutant.

Takao M, Oohata Y, Kitadokoro K, Kobayashi K, Iwai S, Yasui A, Yonei S, Zhang QM.

Genes Cells. 2009 Feb;14(2):261-70. doi: 10.1111/j.1365-2443.2008.01271.x. Epub 2008 Jan 15.

PMID:
19170771
17.

Functions of base flipping in E. coli nucleotide excision repair.

Malta E, Verhagen CP, Moolenaar GF, Filippov DV, van der Marel GA, Goosen N.

DNA Repair (Amst). 2008 Oct 1;7(10):1647-58. doi: 10.1016/j.dnarep.2008.06.011. Epub 2008 Jul 26.

PMID:
18638572
18.

Bacterial base excision repair enzyme Fpg recognizes bulky N7-substituted-FapydG lesion via unproductive binding mode.

Coste F, Ober M, Le Bihan YV, Izquierdo MA, Hervouet N, Mueller H, Carell T, Castaing B.

Chem Biol. 2008 Jul 21;15(7):706-17. doi: 10.1016/j.chembiol.2008.05.014.

19.

Structural basis for the unusual specificity of Escherichia coli aminopeptidase N.

Addlagatta A, Gay L, Matthews BW.

Biochemistry. 2008 May 13;47(19):5303-11. doi: 10.1021/bi7022333. Epub 2008 Apr 17.

PMID:
18416562
20.

Structural basis of the 3'-end recognition of a leading strand in stalled replication forks by PriA.

Sasaki K, Ose T, Okamoto N, Maenaka K, Tanaka T, Masai H, Saito M, Shirai T, Kohda D.

EMBO J. 2007 May 16;26(10):2584-93. Epub 2007 Apr 26.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk