Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 143

1.

Electron acceleration by a tightly focused laser beam.

Salamin YI, Keitel CH.

Phys Rev Lett. 2002 Mar 4;88(9):095005. Epub 2002 Feb 15.

PMID:
11864020
[PubMed]
2.

Relativistic electron dynamics in intense crossed laser beams: acceleration and Compton harmonics.

Salamin YI, Mocken GR, Keitel CH.

Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Jan;67(1 Pt 2):016501. Epub 2003 Jan 8.

PMID:
12636616
[PubMed]
3.

Electron self-injection during interaction of tightly focused few-cycle laser pulses with underdense plasma.

Zhidkov A, Fujii T, Nemoto K.

Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Sep;78(3 Pt 2):036406. Epub 2008 Sep 19.

PMID:
18851168
[PubMed]
4.

Effect of external static magnetic field on the emittance and total charge of electron beams generated by laser-Wakefield acceleration.

Hosokai T, Kinoshita K, Zhidkov A, Maekawa A, Yamazaki A, Uesaka M.

Phys Rev Lett. 2006 Aug 18;97(7):075004. Epub 2006 Aug 18.

PMID:
17026240
[PubMed]
5.

Ponderomotive acceleration of electrons by a tightly focused intense laser beam.

He F, Yu W, Lu P, Xu H, Qian L, Shen B, Yuan X, Li R, Xu Z.

Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Oct;68(4 Pt 2):046407. Epub 2003 Oct 28.

PMID:
14683054
[PubMed]
6.

Acceleration of electrons by a tightly focused intense laser beam.

Li JX, Zang WP, Li YD, Tian JG.

Opt Express. 2009 Jul 6;17(14):11850-9.

PMID:
19582099
[PubMed - indexed for MEDLINE]
7.

Dual scattering foil design for poly-energetic electron beams.

Kainz KK, Antolak JA, Almond PR, Bloch CD, Hogstrom KR.

Phys Med Biol. 2005 Mar 7;50(5):755-67. Epub 2005 Feb 17.

PMID:
15798252
[PubMed - indexed for MEDLINE]
8.

Electron acceleration by an intense short pulse laser in a static magnetic field in vacuum.

Singh KP.

Phys Rev E Stat Nonlin Soft Matter Phys. 2004 May;69(5 Pt 2):056410. Epub 2004 May 28.

PMID:
15244954
[PubMed]
9.

Vacuum laser-driven acceleration by Airy beams.

Li JX, Zang WP, Tian JG.

Opt Express. 2010 Mar 29;18(7):7300-6. doi: 10.1364/OE.18.007300.

PMID:
20389751
[PubMed]
10.

Acceleration in vacuum of bare nuclei by tightly focused radially polarized laser light.

Salamin YI.

Opt Lett. 2007 Dec 1;32(23):3462-4. Erratum in: Opt Lett. 2008 Aug 1;33(15):1662.

PMID:
18059967
[PubMed]
11.

Quasimonoenergetic electron beam generation by using a pinholelike collimator in a self-modulated laser wakefield acceleration.

Hafz N, Hur MS, Kim GH, Kim C, Ko IS, Suk H.

Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Jan;73(1 Pt 2):016405. Epub 2006 Jan 25.

PMID:
16486286
[PubMed]
12.

Dose properties of a laser accelerated electron beam and prospects for clinical application.

Kainz KK, Hogstrom KR, Antolak JA, Almond PR, Bloch CD, Chiu C, Fomytskyi M, Raischel F, Downer M, Tajima T.

Med Phys. 2004 Jul;31(7):2053-67.

PMID:
15305458
[PubMed - indexed for MEDLINE]
13.

Energy gain of injected electrons subjected to an intense laser field and its magnetic field induced in plasma.

Zeng G.

Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1999 Nov;60(5 Pt B):5950-8.

PMID:
11970498
[PubMed]
14.

High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding.

Geddes CG, Toth CS, Van Tilborg J, Esarey E, Schroeder CB, Bruhwiler D, Nieter C, Cary J, Leemans WP.

Nature. 2004 Sep 30;431(7008):538-41.

PMID:
15457252
[PubMed]
15.

Resonance acceleration of electrons in combined strong magnetic fields and intense laser fields.

Liu H, He XT, Chen SG.

Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Jun;69(6 Pt 2):066409. Epub 2004 Jun 11.

PMID:
15244747
[PubMed]
16.

Electron acceleration by a wake field forced by an intense ultrashort laser pulse.

Malka V, Fritzler S, Lefebvre E, Aleonard MM, Burgy F, Chambaret JP, Chemin JF, Krushelnick K, Malka G, Mangles SP, Najmudin Z, Pittman M, Rousseau JP, Scheurer JN, Walton B, Dangor AE.

Science. 2002 Nov 22;298(5598):1596-600.

PMID:
12446903
[PubMed]
Free Article
17.

Integration of the Lorentz-Dirac equation: Interaction of an intense laser pulse with high-energy electrons.

Koga J.

Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Oct;70(4 Pt 2):046502. Epub 2004 Oct 29.

PMID:
15600540
[PubMed]
18.

Demonstration of a narrow energy spread, ∼0.5  GeV electron beam from a two-stage laser wakefield accelerator.

Pollock BB, Clayton CE, Ralph JE, Albert F, Davidson A, Divol L, Filip C, Glenzer SH, Herpoldt K, Lu W, Marsh KA, Meinecke J, Mori WB, Pak A, Rensink TC, Ross JS, Shaw J, Tynan GR, Joshi C, Froula DH.

Phys Rev Lett. 2011 Jul 22;107(4):045001. Epub 2011 Jul 18.

PMID:
21867013
[PubMed]
19.

Production of a monoenergetic electron bunch in a self-injected laser-wakefield accelerator.

Chang CL, Hsieh CT, Ho YC, Chen YS, Lin JY, Wang J, Chen SY.

Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Mar;75(3 Pt 2):036402. Epub 2007 Mar 7.

PMID:
17500801
[PubMed]
20.

High energy gain of trapped electrons in a tapered, diffraction-dominated inverse-free-electron laser.

Musumeci P, Tochitsky SY, Boucher S, Clayton CE, Doyuran A, England RJ, Joshi C, Pellegrini C, Ralph JE, Rosenzweig JB, Sung C, Tolmachev S, Travish G, Varfolomeev AA, Varfolomeev AA Jr, Yarovoi T, Yoder RB.

Phys Rev Lett. 2005 Apr 22;94(15):154801. Epub 2005 Apr 20.

PMID:
15904152
[PubMed]

Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk