Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 237

Similar articles for PubMed (Select 11541228)

1.
2.

Phenotypic and genotypic description of Sedimenticola selenatireducens strain CUZ, a marine (per)chlorate-respiring gammaproteobacterium, and its close relative the chlorate-respiring sedimenticola strain NSS.

Carlström CI, Loutey DE, Wang O, Engelbrektson A, Clark I, Lucas LN, Somasekhar PY, Coates JD.

Appl Environ Microbiol. 2015 Apr;81(8):2717-26. doi: 10.1128/AEM.03606-14. Epub 2015 Feb 6.

PMID:
25662971
3.

Genome Sequence of a Sulfate-Reducing Thermophilic Bacterium, Thermodesulfobacterium commune DSM 2178T (Phylum Thermodesulfobacteria).

Bhatnagar S, Badger JH, Madupu R, Khouri HM, O'Connor EM, Robb FT, Ward NL, Eisen JA.

Genome Announc. 2015 Jan 29;3(1). pii: e01490-14. doi: 10.1128/genomeA.01490-14.

4.

Genome Sequence of the Sulfate-Reducing Thermophilic Bacterium Thermodesulfovibrio yellowstonii Strain DSM 11347T (Phylum Nitrospirae).

Bhatnagar S, Badger JH, Madupu R, Khouri HM, O'Connor EM, Robb FT, Ward NL, Eisen JA.

Genome Announc. 2015 Jan 29;3(1). pii: e01489-14. doi: 10.1128/genomeA.01489-14.

5.

Nickel, manganese and copper removal by a mixed consortium of sulfate reducing bacteria at a high COD/sulfate ratio.

Barbosa LP, Costa PF, Bertolino SM, Silva JC, Guerra-Sá R, Leão VA, Teixeira MC.

World J Microbiol Biotechnol. 2014 Aug;30(8):2171-80. doi: 10.1007/s11274-013-1592-x. Epub 2014 Apr 8.

PMID:
24710619
6.

Roles of thermophilic thiosulfate-reducing bacteria and methanogenic archaea in the biocorrosion of oil pipelines.

Liang R, Grizzle RS, Duncan KE, McInerney MJ, Suflita JM.

Front Microbiol. 2014 Mar 6;5:89. doi: 10.3389/fmicb.2014.00089. eCollection 2014.

7.

A study of mixed continuous cultures of sulfate-reducing and methane-producing bacteria.

Cappenberg TE.

Microb Ecol. 1975 Mar;2(1):60-72. doi: 10.1007/BF02010381.

PMID:
24241162
8.

[Bacterial sulfur-reducing community in the hydrogen sulfide-rich waters of the "Resort Ust-Kachka (Perm Region, Russia)].

Pimenov NV, Kuranov GV, Briukhanov AL, Veslopolova EF, Koriukina IP, Maslov IuN.

Mikrobiologiia. 2012 Nov-Dec;81(6):779-85. Russian. No abstract available.

PMID:
23610929
9.

Complete Genome Sequence of the Hyperthermophilic Sulfate-Reducing Bacterium Thermodesulfobacterium geofontis OPF15T.

Elkins JG, Hamilton-Brehm SD, Lucas S, Han J, Lapidus A, Cheng JF, Goodwin LA, Pitluck S, Peters L, Mikhailova N, Davenport KW, Detter JC, Han CS, Tapia R, Land ML, Hauser L, Kyrpides NC, Ivanova NN, Pagani I, Bruce D, Woyke T, Cottingham RW.

Genome Announc. 2013 Apr 11;1(2):e0016213. doi: 10.1128/genomeA.00162-13.

10.

Thermal effects on microbial composition and microbiologically induced corrosion and mineral precipitation affecting operation of a geothermal plant in a deep saline aquifer.

Lerm S, Westphal A, Miethling-Graff R, Alawi M, Seibt A, Wolfgramm M, Würdemann H.

Extremophiles. 2013 Mar;17(2):311-27. doi: 10.1007/s00792-013-0518-8. Epub 2013 Jan 29.

PMID:
23358731
11.

Thermodesulfobacterium geofontis sp. nov., a hyperthermophilic, sulfate-reducing bacterium isolated from Obsidian Pool, Yellowstone National Park.

Hamilton-Brehm SD, Gibson RA, Green SJ, Hopmans EC, Schouten S, van der Meer MT, Shields JP, Damsté JS, Elkins JG.

Extremophiles. 2013 Mar;17(2):251-63. doi: 10.1007/s00792-013-0512-1. Epub 2013 Jan 24.

PMID:
23345010
12.

[Isolation of Variovorax genus bacteria from Thioploca colonies of lake Baikal].

Dul'tseva NM, Chernitsyna SM, Zemskaia TI.

Mikrobiologiia. 2012 Jan-Feb;81(1):72-83. Russian. No abstract available.

PMID:
22629684
13.

A comparative genomic analysis of energy metabolism in sulfate reducing bacteria and archaea.

Pereira IA, Ramos AR, Grein F, Marques MC, da Silva SM, Venceslau SS.

Front Microbiol. 2011 Apr 19;2:69. doi: 10.3389/fmicb.2011.00069. eCollection 2011.

14.

Identification of sulfur-cycle prokaryotes in a low-sulfate lake (Lake Pavin) using aprA and 16S rRNA gene markers.

Biderre-Petit C, Boucher D, Kuever J, Alberic P, Jézéquel D, Chebance B, Borrel G, Fonty G, Peyret P.

Microb Ecol. 2011 Feb;61(2):313-27. doi: 10.1007/s00248-010-9769-4. Epub 2010 Nov 25.

PMID:
21107833
15.

[Taxonomic position of certain representatives of sulphate-reducing corrosive microbial community].

Asaulenko LH, Abdulina DR, Purish LM.

Mikrobiol Z. 2010 Jul-Aug;72(4):3-10. Ukrainian.

PMID:
20812503
16.

A 'rare biosphere' microorganism contributes to sulfate reduction in a peatland.

Pester M, Bittner N, Deevong P, Wagner M, Loy A.

ISME J. 2010 Dec;4(12):1591-602. doi: 10.1038/ismej.2010.75. Epub 2010 Jun 10.

PMID:
20535221
17.

Sulfidogenesis under extremely haloalkaline conditions in soda lakes of Kulunda Steppe (Altai, Russia).

Sorokin DY, Rusanov II, Pimenov NV, Tourova TP, Abbas B, Muyzer G.

FEMS Microbiol Ecol. 2010 Aug;73(2):278-90. doi: 10.1111/j.1574-6941.2010.00901.x. Epub 2010 May 4.

18.

A geothermal-linked biological oasis in Yellowstone Lake, Yellowstone National Park, Wyoming.

Lovalvo D, Clingenpeel SR, McGinnis S, Macur RE, Varley JD, Inskeep WP, Glime J, Nealson K, McDermott TR.

Geobiology. 2010 Sep;8(4):327-36. doi: 10.1111/j.1472-4669.2010.00244.x. Epub 2010 May 10.

PMID:
20491946
19.

[Scanning for sulfate-degrading bacteria from a mat of hydrothermal field of Lost City by molecular cloning techniques ].

Gerasimchuk AL, Shatalov AA, Novikov AD, Butorova OP, Pimenov NV, Lein AIu, Ianenko AS, Karnachuk OV.

Mikrobiologiia. 2010 Jan-Feb;79(1):103-13. Russian. No abstract available.

PMID:
20411667
20.

Aggregate formation in a freshwater bacterial strain induced by growth state and conspecific chemical cues.

Blom JF, Horňák K, Simek K, Pernthaler J.

Environ Microbiol. 2010 Sep;12(9):2486-95. doi: 10.1111/j.1462-2920.2010.02222.x. Epub 2010 Apr 19.

PMID:
20406293
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk