Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 171

1.

Dissolution and reduction of magnetite by bacteria.

Kostka JE, Nealson KH.

Environ Sci Technol. 1995 Oct;29(10):2535-40.

PMID:
11539843
2.

Evidence for microbial Fe(III) reduction in anoxic, mining-impacted lake sediments (Lake Coeur d'Alene, Idaho).

Cummings DE, March AW, Bostick B, Spring S, Caccavo F Jr, Fendorf S, Rosenzweig RF.

Appl Environ Microbiol. 2000 Jan;66(1):154-62.

3.

Novel chemolithotrophic, thermophilic, anaerobic bacteria Thermolithobacter ferrireducens gen. nov., sp. nov. and Thermolithobacter carboxydivorans sp. nov.

Sokolova T, Hanel J, Onyenwoke RU, Reysenbach AL, Banta A, Geyer R, González JM, Whitman WB, Wiegel J.

Extremophiles. 2007 Jan;11(1):145-57. Epub 2006 Oct 5.

PMID:
17021657
4.

Reactive iron in marine sediments.

Canfield DE.

Geochim Cosmochim Acta. 1989;53:619-32.

PMID:
11539783
5.

Biogenic magnetite formation through anaerobic biooxidation of Fe(II).

Chaudhuri SK, Lack JG, Coates JD.

Appl Environ Microbiol. 2001 Jun;67(6):2844-8.

6.

[High-temperature microbial sulfate reduction can be accompanied by magnetite formation].

Slobodkin AI, Chistiakova NI, Rusakov VS.

Mikrobiologiia. 2004 Jul-Aug;73(4):553-7. Russian.

PMID:
15521182
7.

Repeated anaerobic microbial redox cycling of iron.

Coby AJ, Picardal F, Shelobolina E, Xu H, Roden EE.

Appl Environ Microbiol. 2011 Sep;77(17):6036-42. doi: 10.1128/AEM.00276-11. Epub 2011 Jul 8.

8.

Microbial iron redox cycling in a circumneutral-pH groundwater seep.

Blöthe M, Roden EE.

Appl Environ Microbiol. 2009 Jan;75(2):468-73. doi: 10.1128/AEM.01817-08. Epub 2008 Dec 1.

9.

Coastal eutrophication thresholds: a matter of sediment microbial processes.

Lehtoranta J, Ekholm P, Pitkänen H.

Ambio. 2009 Sep;38(6):303-8. Review.

PMID:
19860153
10.

The role of biomineralization in microbiologically influenced corrosion.

Little B, Wagner P, Hart K, Ray R, Lavoie D, Nealson K, Aguilar C.

Biodegradation. 1998;9(1):1-10.

PMID:
9807800
11.

Suboxic diagenesis in banded iron formations.

Walker JC.

Nature. 1984 May 24;309:340-2.

PMID:
11541981
12.

Technetium reduction in sediments of a shallow aquifer exhibiting dissimilatory iron reduction potential.

Wildung RE, Li SW, Murray CJ, Krupka KM, Xie Y, Hess NJ, Roden EE.

FEMS Microbiol Ecol. 2004 Jul 1;49(1):151-62. doi: 10.1016/j.femsec.2003.08.016.

13.

Direct and Fe(II)-mediated reduction of technetium by Fe(III)-reducing bacteria.

Lloyd JR, Sole VA, Van Praagh CV, Lovley DR.

Appl Environ Microbiol. 2000 Sep;66(9):3743-9.

15.

Evidence for rapid microscale bacterial redox cycling of iron in circumneutral environments.

Sobolev D, Roden EE.

Antonie Van Leeuwenhoek. 2002 Aug;81(1-4):587-97.

PMID:
12448754
16.

Intracellular iron minerals in a dissimilatory iron-reducing bacterium.

Glasauer S, Langley S, Beveridge TJ.

Science. 2002 Jan 4;295(5552):117-9.

17.

Enumeration and characterization of iron(III)-reducing microbial communities from acidic subsurface sediments contaminated with uranium(VI).

Petrie L, North NN, Dollhopf SL, Balkwill DL, Kostka JE.

Appl Environ Microbiol. 2003 Dec;69(12):7467-79.

18.

Electron shuttling via humic acids in microbial iron(III) reduction in a freshwater sediment.

Kappler A, Benz M, Schink B, Brune A.

FEMS Microbiol Ecol. 2004 Jan 1;47(1):85-92. doi: 10.1016/S0168-6496(03)00245-9.

19.
20.

Anaerobic nitrate-dependent iron(II) bio-oxidation by a novel lithoautotrophic betaproteobacterium, strain 2002.

Weber KA, Pollock J, Cole KA, O'Connor SM, Achenbach LA, Coates JD.

Appl Environ Microbiol. 2006 Jan;72(1):686-94.

Items per page

Supplemental Content

Write to the Help Desk