Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 96

Similar articles for PubMed (Select 11072345)

1.

On the Reconstruction of Ancient Doubled Circular Genomes Using Minimum Reversals.

El-Mabrouk N, Sankoff D.

Genome Inform Ser Workshop Genome Inform. 1999;10:83-93.

PMID:
11072345
2.

Two notes on genome rearrangement.

Ozery-Flato M, Shamir R.

J Bioinform Comput Biol. 2003 Apr;1(1):71-94.

PMID:
15290782
3.

Computing the reversal distance between genomes in the presence of multi-gene families via binary integer programming.

Suksawatchon J, Lursinsap C, Bodén M.

J Bioinform Comput Biol. 2007 Feb;5(1):117-33.

PMID:
17477494
4.

Perfect sorting by reversals is not always difficult.

Bérard S, Bergeron A, Chauve C, Paul C.

IEEE/ACM Trans Comput Biol Bioinform. 2007 Jan-Mar;4(1):4-16.

PMID:
17277409
5.

Rearrangement models and single-cut operations.

Bergeron A, Medvedev P, Stoye J.

J Comput Biol. 2010 Sep;17(9):1213-25. doi: 10.1089/cmb.2010.0091.

PMID:
20874405
6.
7.

Sorting by weighted reversals, transpositions, and inverted transpositions.

Bader M, Ohlebusch E.

J Comput Biol. 2007 Jun;14(5):615-36. Review.

PMID:
17683264
8.

Genome rearrangements with duplications.

Bader M.

BMC Bioinformatics. 2010 Jan 18;11 Suppl 1:S27. doi: 10.1186/1471-2105-11-S1-S27.

9.

Computation of perfect DCJ rearrangement scenarios with linear and circular chromosomes.

Bérard S, Chateau A, Chauve C, Paul C, Tannier E.

J Comput Biol. 2009 Oct;16(10):1287-309. doi: 10.1089/cmb.2009.0088.

PMID:
19803733
10.

A fast algorithm for the multiple genome rearrangement problem with weighted reversals and transpositions.

Bader M, Abouelhoda MI, Ohlebusch E.

BMC Bioinformatics. 2008 Dec 4;9:516. doi: 10.1186/1471-2105-9-516.

11.

Assembling contigs in draft genomes using reversals and block-interchanges.

Li CL, Chen KT, Lu CL.

BMC Bioinformatics. 2013;14 Suppl 5:S9. doi: 10.1186/1471-2105-14-S5-S9. Epub 2013 Apr 10.

12.

An algorithm to enumerate sorting reversals for signed permutations.

Siepel AC.

J Comput Biol. 2003;10(3-4):575-97.

PMID:
12935346
13.

Guided genome halving: hardness, heuristics and the history of the Hemiascomycetes.

Zheng C, Zhu Q, Adam Z, Sankoff D.

Bioinformatics. 2008 Jul 1;24(13):i96-104. doi: 10.1093/bioinformatics/btn146.

14.

AliquotG: an improved heuristic algorithm for genome aliquoting.

Chen Z, Huang S, Li Y, Xu A.

PLoS One. 2013 May 14;8(5):e64279. doi: 10.1371/journal.pone.0064279. Print 2013.

15.
16.

The complete mitochondrial genome sequence of the liverwort Pleurozia purpurea reveals extremely conservative mitochondrial genome evolution in liverworts.

Wang B, Xue J, Li L, Liu Y, Qiu YL.

Curr Genet. 2009 Dec;55(6):601-9. doi: 10.1007/s00294-009-0273-7. Epub 2009 Sep 16.

PMID:
19756627
17.

Lateral gene transfer, rearrangement, reconciliation.

Patterson M, Szöllősi G, Daubin V, Tannier E.

BMC Bioinformatics. 2013;14 Suppl 15:S4. doi: 10.1186/1471-2105-14-S15-S4. Epub 2013 Oct 15.

18.

Sorting by reversals, block interchanges, tandem duplications, and deletions.

Bader M.

BMC Bioinformatics. 2009 Jan 30;10 Suppl 1:S9. doi: 10.1186/1471-2105-10-S1-S9.

19.

Multiple genome rearrangement by reversals.

Wu S, Gu X.

Pac Symp Biocomput. 2002:259-70.

PMID:
11928481
20.

Genome rearrangement with gene families.

Sankoff D.

Bioinformatics. 1999 Nov;15(11):909-17.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk