Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 114

Similar articles for PubMed (Select 10789425)

1.

A new approach to the study of ocular chromatic aberrations.

Marcos S, Burns SA, Moreno-Barriusop E, Navarro R.

Vision Res. 1999 Oct;39(26):4309-23.

2.

Longitudinal chromatic aberration of the human infant eye.

Wang J, Candy TR, Teel DF, Jacobs RJ.

J Opt Soc Am A Opt Image Sci Vis. 2008 Sep;25(9):2263-70.

3.

Aberrations of the human eye in visible and near infrared illumination.

Llorente L, Diaz-Santana L, Lara-Saucedo D, Marcos S.

Optom Vis Sci. 2003 Jan;80(1):26-35.

PMID:
12553541
4.
5.

Construction of special eye models for investigation of chromatic and higher-order aberrations of eyes.

Zhai Y, Wang Y, Wang Z, Liu Y, Zhang L, He Y, Chang S.

Biomed Mater Eng. 2014;24(6):3073-81. doi: 10.3233/BME-141129.

PMID:
25227016
6.

In vivo chromatic aberration in eyes implanted with intraocular lenses.

Pérez-Merino P, Dorronsoro C, Llorente L, Durán S, Jiménez-Alfaro I, Marcos S.

Invest Ophthalmol Vis Sci. 2013 Apr 12;54(4):2654-61. doi: 10.1167/iovs.13-11912.

PMID:
23493299
7.

The optical transverse chromatic aberration on the fovea of the human eye.

Simonet P, Campbell MC.

Vision Res. 1990;30(2):187-206.

PMID:
2309454
8.

Ocular aberrations up to the infrared range: from 632.8 to 1070 nm.

Fernández EJ, Artal P.

Opt Express. 2008 Dec 22;16(26):21199-208.

PMID:
19104549
9.

In vivo longitudinal chromatic aberration of pseudophakic eyes.

Siedlecki D, Jóźwik A, Zając M, Hill-Bator A, Turno-Kręcicka A.

Optom Vis Sci. 2014 Feb;91(2):240-6. doi: 10.1097/OPX.0000000000000137.

PMID:
24270638
10.

The spatially resolved refractometer.

Burns SA.

J Refract Surg. 2000 Sep-Oct;16(5):S566-9. Review.

PMID:
11019874
11.

Impact of primary spherical aberration, spatial frequency and Stiles Crawford apodization on wavefront determined refractive error: a computational study.

Xu R, Bradley A, Thibos LN.

Ophthalmic Physiol Opt. 2013 Jul;33(4):444-55. doi: 10.1111/opo.12072. Epub 2013 May 19.

12.

Measurement of the wave-front aberration of the eye by a fast psychophysical procedure.

He JC, Marcos S, Webb RH, Burns SA.

J Opt Soc Am A Opt Image Sci Vis. 1998 Sep;15(9):2449-56.

PMID:
9729856
13.

Dependence of wave front refraction on pupil size due to the presence of higher order aberrations.

Iseli HP, Bueeler M, Hafezi F, Seiler T, Mrochen M.

Eur J Ophthalmol. 2005 Nov-Dec;15(6):680-7.

PMID:
16329051
14.

Theory and measurement of ocular chromatic aberration.

Thibos LN, Bradley A, Still DL, Zhang X, Howarth PA.

Vision Res. 1990;30(1):33-49.

PMID:
2321365
15.

Weighted Zernike expansion with applications to the optical aberration of the human eye.

Nam J, Rubinstein J.

J Opt Soc Am A Opt Image Sci Vis. 2005 Sep;22(9):1709-16.

PMID:
16211797
16.

Refractive status in eyes with inhomogeneous or irregular pupils.

Navarro R, Fernández-Sánchez V, López-Gil N.

Optom Vis Sci. 2014 Feb;91(2):221-30. doi: 10.1097/OPX.0000000000000135.

PMID:
24270635
17.

Monochromatic aberrations in the accommodated human eye.

He JC, Burns SA, Marcos S.

Vision Res. 2000;40(1):41-8.

18.

Influence of spherical aberration, stimulus spatial frequency, and pupil apodisation on subjective refractions.

Bradley A, Xu R, Thibos L, Marin G, Hernandez M.

Ophthalmic Physiol Opt. 2014 May;34(3):309-20. doi: 10.1111/opo.12114. Epub 2014 Jan 7.

19.
20.

Custom optimization of intraocular lens asphericity.

Wang L, Koch DD.

J Cataract Refract Surg. 2007 Oct;33(10):1713-20.

PMID:
17889765
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk