Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 113

1.

CaM kinase kinase beta-mediated activation of the growth regulatory kinase AMPK is required for androgen-dependent migration of prostate cancer cells.

Frigo DE, Howe MK, Wittmann BM, Brunner AM, Cushman I, Wang Q, Brown M, Means AR, McDonnell DP.

Cancer Res. 2011 Jan 15;71(2):528-37. doi: 10.1158/0008-5472.CAN-10-2581. Epub 2010 Nov 22.

2.

Androgens regulate prostate cancer cell growth via an AMPK-PGC-1α-mediated metabolic switch.

Tennakoon JB, Shi Y, Han JJ, Tsouko E, White MA, Burns AR, Zhang A, Xia X, Ilkayeva OR, Xin L, Ittmann MM, Rick FG, Schally AV, Frigo DE.

Oncogene. 2014 Nov 6;33(45):5251-61. doi: 10.1038/onc.2013.463. Epub 2013 Nov 4.

3.

Development of a small-molecule serum- and glucocorticoid-regulated kinase-1 antagonist and its evaluation as a prostate cancer therapeutic.

Sherk AB, Frigo DE, Schnackenberg CG, Bray JD, Laping NJ, Trizna W, Hammond M, Patterson JR, Thompson SK, Kazmin D, Norris JD, McDonnell DP.

Cancer Res. 2008 Sep 15;68(18):7475-83. doi: 10.1158/0008-5472.CAN-08-1047.

4.

Androgens up-regulate the insulin-like growth factor-I receptor in prostate cancer cells.

Pandini G, Mineo R, Frasca F, Roberts CT Jr, Marcelli M, Vigneri R, Belfiore A.

Cancer Res. 2005 Mar 1;65(5):1849-57.

5.

A regulatory feedback loop between Ca2+/calmodulin-dependent protein kinase kinase 2 (CaMKK2) and the androgen receptor in prostate cancer progression.

Karacosta LG, Foster BA, Azabdaftari G, Feliciano DM, Edelman AM.

J Biol Chem. 2012 Jul 13;287(29):24832-43. doi: 10.1074/jbc.M112.370783. Epub 2012 May 31.

6.

Identification of kinases regulating prostate cancer cell growth using an RNAi phenotypic screen.

Whitworth H, Bhadel S, Ivey M, Conaway M, Spencer A, Hernan R, Holemon H, Gioeli D.

PLoS One. 2012;7(6):e38950. doi: 10.1371/journal.pone.0038950. Epub 2012 Jun 27.

8.

Down-regulation of calcium/calmodulin-dependent protein kinase kinase 2 by androgen deprivation induces castration-resistant prostate cancer.

Shima T, Mizokami A, Miyagi T, Kawai K, Izumi K, Kumaki M, Ofude M, Zhang J, Keller ET, Namiki M.

Prostate. 2012 Dec 1;72(16):1789-801. doi: 10.1002/pros.22533. Epub 2012 May 1.

PMID:
22549914
9.

Growth hormone (GH) receptors in prostate cancer: gene expression in human tissues and cell lines and characterization, GH signaling and androgen receptor regulation in LNCaP cells.

Weiss-Messer E, Merom O, Adi A, Karry R, Bidosee M, Ber R, Kaploun A, Stein A, Barkey RJ.

Mol Cell Endocrinol. 2004 May 31;220(1-2):109-23.

PMID:
15196705
10.

Proteasome inhibitors induce AMPK activation via CaMKKβ in human breast cancer cells.

Deshmukh RR, Dou QP.

Breast Cancer Res Treat. 2015 Aug;153(1):79-88. doi: 10.1007/s10549-015-3512-2. Epub 2015 Jul 31.

PMID:
26227473
11.

The interplay of AMP-activated protein kinase and androgen receptor in prostate cancer cells.

Shen M, Zhang Z, Ratnam M, Dou QP.

J Cell Physiol. 2014 Jun;229(6):688-95. doi: 10.1002/jcp.24494.

12.

Phosphoinositide 3-OH kinase p85alpha and p110beta are essential for androgen receptor transactivation and tumor progression in prostate cancers.

Zhu Q, Youn H, Tang J, Tawfik O, Dennis K, Terranova PF, Du J, Raynal P, Thrasher JB, Li B.

Oncogene. 2008 Jul 31;27(33):4569-79. doi: 10.1038/onc.2008.91. Epub 2008 Mar 31.

13.

Glucagon regulates ACC activity in adipocytes through the CAMKKβ/AMPK pathway.

Peng IC, Chen Z, Sun W, Li YS, Marin TL, Hsu PH, Su MI, Cui X, Pan S, Lytle CY, Johnson DA, Blaeser F, Chatila T, Shyy JY.

Am J Physiol Endocrinol Metab. 2012 Jun 15;302(12):E1560-8. doi: 10.1152/ajpendo.00504.2011. Epub 2012 Mar 27.

14.

Compensatory upregulation of tyrosine kinase Etk/BMX in response to androgen deprivation promotes castration-resistant growth of prostate cancer cells.

Dai B, Chen H, Guo S, Yang X, Linn DE, Sun F, Li W, Guo Z, Xu K, Kim O, Kong X, Melamed J, Qiu S, Chen H, Qiu Y.

Cancer Res. 2010 Jul 1;70(13):5587-96. doi: 10.1158/0008-5472.CAN-09-4610. Epub 2010 Jun 22.

15.

Regulatory processes affecting androgen receptor expression, stability, and function: potential targets to treat hormone-refractory prostate cancer.

Reddy GP, Barrack ER, Dou QP, Menon M, Pelley R, Sarkar FH, Sheng S.

J Cell Biochem. 2006 Aug 15;98(6):1408-23. Review.

PMID:
16619263
16.

Targeting the 5'-AMP-activated protein kinase and related metabolic pathways for the treatment of prostate cancer.

Popovics P, Frigo DE, Schally AV, Rick FG.

Expert Opin Ther Targets. 2015 May;19(5):617-32. doi: 10.1517/14728222.2015.1005603. Epub 2015 Jan 20. Review.

PMID:
25600663
17.

Androgen deprivation increases p300 expression in prostate cancer cells.

Heemers HV, Sebo TJ, Debes JD, Regan KM, Raclaw KA, Murphy LM, Hobisch A, Culig Z, Tindall DJ.

Cancer Res. 2007 Apr 1;67(7):3422-30.

18.

Calcium/calmodulin-dependent kinase II plays an important role in prostate cancer cell survival.

Rokhlin OW, Taghiyev AF, Bayer KU, Bumcrot D, Koteliansk VE, Glover RA, Cohen MB.

Cancer Biol Ther. 2007 May;6(5):732-42. Epub 2007 Feb 5.

PMID:
17387273
19.

A novel androgen receptor splice variant is up-regulated during prostate cancer progression and promotes androgen depletion-resistant growth.

Guo Z, Yang X, Sun F, Jiang R, Linn DE, Chen H, Chen H, Kong X, Melamed J, Tepper CG, Kung HJ, Brodie AM, Edwards J, Qiu Y.

Cancer Res. 2009 Mar 15;69(6):2305-13. doi: 10.1158/0008-5472.CAN-08-3795. Epub 2009 Feb 24.

20.

Modulation of protein phosphatase 2A activity alters androgen-independent growth of prostate cancer cells: therapeutic implications.

Bhardwaj A, Singh S, Srivastava SK, Honkanen RE, Reed E, Singh AP.

Mol Cancer Ther. 2011 May;10(5):720-31. doi: 10.1158/1535-7163.MCT-10-1096. Epub 2011 Mar 10.

Items per page

Supplemental Content

Write to the Help Desk