Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 101

1.

Biofuel and energy crops: high-yield Saccharinae take center stage in the post-genomics era.

de Siqueira Ferreira S, Nishiyama MY Jr, Paterson AH, Souza GM.

Genome Biol. 2013 Jun 27;14(6):210. doi: 10.1186/gb-2013-14-6-210.

PMID:
23805917
[PubMed - in process]
Free PMC Article
2.

The potential of C4 grasses for cellulosic biofuel production.

van der Weijde T, Alvim Kamei CL, Torres AF, Vermerris W, Dolstra O, Visser RG, Trindade LM.

Front Plant Sci. 2013 May 3;4:107. doi: 10.3389/fpls.2013.00107. eCollection 2013.

PMID:
23653628
[PubMed]
Free PMC Article
3.

A framework genetic map for Miscanthus sinensis from RNAseq-based markers shows recent tetraploidy.

Swaminathan K, Chae WB, Mitros T, Varala K, Xie L, Barling A, Glowacka K, Hall M, Jezowski S, Ming R, Hudson M, Juvik JA, Rokhsar DS, Moose SP.

BMC Genomics. 2012 Apr 24;13:142. doi: 10.1186/1471-2164-13-142.

PMID:
22524439
[PubMed - indexed for MEDLINE]
Free PMC Article
4.

Survey of genomics approaches to improve bioenergy traits in maize, sorghum and sugarcane.

Vermerris W.

J Integr Plant Biol. 2011 Feb;53(2):105-19. doi: 10.1111/j.1744-7909.2010.01020.x. Review.

PMID:
21205186
[PubMed - indexed for MEDLINE]
5.

Variation in canopy duration in the perennial biofuel crop Miscanthus reveals complex associations with yield.

Robson PR, Farrar K, Gay AP, Jensen EF, Clifton-Brown JC, Donnison IS.

J Exp Bot. 2013 May;64(8):2373-83. doi: 10.1093/jxb/ert104. Epub 2013 Apr 18.

PMID:
23599277
[PubMed - indexed for MEDLINE]
Free PMC Article
6.

Energy sorghum--a genetic model for the design of C4 grass bioenergy crops.

Mullet J, Morishige D, McCormick R, Truong S, Hilley J, McKinley B, Anderson R, Olson SN, Rooney W.

J Exp Bot. 2014 Jul;65(13):3479-89. doi: 10.1093/jxb/eru229. Epub 2014 Jun 22.

PMID:
24958898
[PubMed - in process]
7.

Genetic engineering of energy crops: a strategy for biofuel production in China.

Xie G, Peng L.

J Integr Plant Biol. 2011 Feb;53(2):143-50. doi: 10.1111/j.1744-7909.2010.01022.x. Review.

PMID:
21205188
[PubMed - indexed for MEDLINE]
8.

A novel framework to classify marginal land for sustainable biomass feedstock production.

Gopalakrishnan G, Cristina Negri M, Snyder SW.

J Environ Qual. 2011 Sep-Oct;40(5):1593-600. doi: 10.2134/jeq2010.0539.

PMID:
21869522
[PubMed - indexed for MEDLINE]
9.

Biofuels as a sustainable energy source: an update of the applications of proteomics in bioenergy crops and algae.

Ndimba BK, Ndimba RJ, Johnson TS, Waditee-Sirisattha R, Baba M, Sirisattha S, Shiraiwa Y, Agrawal GK, Rakwal R.

J Proteomics. 2013 Nov 20;93:234-44. doi: 10.1016/j.jprot.2013.05.041. Epub 2013 Jun 20. Review.

PMID:
23792822
[PubMed - indexed for MEDLINE]
10.

SSR-based genetic maps of Miscanthus sinensis and M. sacchariflorus, and their comparison to sorghum.

Kim C, Zhang D, Auckland SA, Rainville LK, Jakob K, Kronmiller B, Sacks EJ, Deuter M, Paterson AH.

Theor Appl Genet. 2012 May;124(7):1325-38. doi: 10.1007/s00122-012-1790-1. Epub 2012 Jan 25.

PMID:
22274765
[PubMed - indexed for MEDLINE]
11.

The Biofuel Feedstock Genomics Resource: a web-based portal and database to enable functional genomics of plant biofuel feedstock species.

Childs KL, Konganti K, Buell CR.

Database (Oxford). 2012 Jan 15;2012:bar061. doi: 10.1093/database/bar061. Print 2012.

PMID:
22250003
[PubMed - indexed for MEDLINE]
Free PMC Article
12.

Sugarcane for bioenergy production: an assessment of yield and regulation of sucrose content.

Waclawovsky AJ, Sato PM, Lembke CG, Moore PH, Souza GM.

Plant Biotechnol J. 2010 Apr;8(3):263-76. doi: 10.1111/j.1467-7652.2009.00491.x. Review.

PMID:
20388126
[PubMed - indexed for MEDLINE]
13.

Modelling supply and demand of bioenergy from short rotation coppice and Miscanthus in the UK.

Bauen AW, Dunnett AJ, Richter GM, Dailey AG, Aylott M, Casella E, Taylor G.

Bioresour Technol. 2010 Nov;101(21):8132-43. doi: 10.1016/j.biortech.2010.05.002. Epub 2010 Jun 17.

PMID:
20624602
[PubMed - indexed for MEDLINE]
14.

Major energy plants and their potential for bioenergy development in China.

Li X, Hou S, Su M, Yang M, Shen S, Jiang G, Qi D, Chen S, Liu G.

Environ Manage. 2010 Oct;46(4):579-89. doi: 10.1007/s00267-010-9443-0. Epub 2010 Feb 17.

PMID:
20162275
[PubMed - indexed for MEDLINE]
15.

Crop biotechnology provides an opportunity to develop a sustainable future.

McLaren JS.

Trends Biotechnol. 2005 Jul;23(7):339-42. Review.

PMID:
15978317
[PubMed - indexed for MEDLINE]
16.

Expansion of sugarcane ethanol production in Brazil: environmental and social challenges.

Martinelli LA, Filoso S.

Ecol Appl. 2008 Jun;18(4):885-98.

PMID:
18536250
[PubMed - indexed for MEDLINE]
17.

Genomics of sorghum.

Paterson AH.

Int J Plant Genomics. 2008;2008:362451. doi: 10.1155/2008/362451.

PMID:
18483564
[PubMed]
Free PMC Article
18.

Plants to power: bioenergy to fuel the future.

Yuan JS, Tiller KH, Al-Ahmad H, Stewart NR, Stewart CN Jr.

Trends Plant Sci. 2008 Aug;13(8):421-9. doi: 10.1016/j.tplants.2008.06.001. Epub 2008 Jul 16. Review.

PMID:
18632303
[PubMed - indexed for MEDLINE]
19.

Towards much more efficient biofuel crops - can sugarcane pave the way?

Tammisola J.

GM Crops. 2010 Jul-Sep;1(4):181-98. doi: 10.4161/gmcr.1.4.13173. Review.

PMID:
21844673
[PubMed - indexed for MEDLINE]
Free Article
20.

Moth diversity in three biofuel crops and native prairie in Illinois.

Harrison T, Berenbaum MR.

Insect Sci. 2013 Jun;20(3):407-19. doi: 10.1111/j.1744-7917.2012.01530.x. Epub 2012 Jul 13.

PMID:
23955892
[PubMed - indexed for MEDLINE]

Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk