Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 97

1.

Plastic, fantastic! Phenotypic variance in the transcriptional landscape of the grape berry.

Fernie AR, Tohge T.

Genome Biol. 2013 Jun 7;14(6):119. doi: 10.1186/gb-2013-14-6-119.

PMID:
23742251
[PubMed - in process]
Free PMC Article
2.

The plasticity of the grapevine berry transcriptome.

Dal Santo S, Tornielli GB, Zenoni S, Fasoli M, Farina L, Anesi A, Guzzo F, Delledonne M, Pezzotti M.

Genome Biol. 2013 Jun 7;14(6):r54. doi: 10.1186/gb-2013-14-6-r54.

PMID:
23759170
[PubMed - in process]
Free PMC Article
3.

Berry skin development in Norton grape: distinct patterns of transcriptional regulation and flavonoid biosynthesis.

Ali MB, Howard S, Chen S, Wang Y, Yu O, Kovacs LG, Qiu W.

BMC Plant Biol. 2011 Jan 10;11:7. doi: 10.1186/1471-2229-11-7.

PMID:
21219654
[PubMed - indexed for MEDLINE]
Free PMC Article
4.

iTRAQ-based protein profiling provides insights into the central metabolism changes driving grape berry development and ripening.

Martínez-Esteso MJ, Vilella-Antón MT, Pedreño MÁ, Valero ML, Bru-Martínez R.

BMC Plant Biol. 2013 Oct 24;13:167. doi: 10.1186/1471-2229-13-167.

PMID:
24152288
[PubMed - indexed for MEDLINE]
Free PMC Article
5.

Generation of ESTs in Vitis vinifera wine grape (Cabernet Sauvignon) and table grape (Muscat Hamburg) and discovery of new candidate genes with potential roles in berry development.

Peng FY, Reid KE, Liao N, Schlosser J, Lijavetzky D, Holt R, Martínez Zapater JM, Jones S, Marra M, Bohlmann J, Lund ST.

Gene. 2007 Nov 1;402(1-2):40-50. Epub 2007 Jul 31.

PMID:
17761391
[PubMed - indexed for MEDLINE]
6.

Genome-wide transcriptional analysis of grapevine berry ripening reveals a set of genes similarly modulated during three seasons and the occurrence of an oxidative burst at vèraison.

Pilati S, Perazzolli M, Malossini A, Cestaro A, Demattè L, Fontana P, Dal Ri A, Viola R, Velasco R, Moser C.

BMC Genomics. 2007 Nov 22;8:428.

PMID:
18034875
[PubMed - indexed for MEDLINE]
Free PMC Article
7.

Transcriptome analysis at four developmental stages of grape berry (Vitis vinifera cv. Shiraz) provides insights into regulated and coordinated gene expression.

Sweetman C, Wong DC, Ford CM, Drew DP.

BMC Genomics. 2012 Dec 11;13:691. doi: 10.1186/1471-2164-13-691.

PMID:
23227855
[PubMed - indexed for MEDLINE]
Free PMC Article
8.

Metabolic profiling reveals coordinated switches in primary carbohydrate metabolism in grape berry (Vitis vinifera L.), a non-climacteric fleshy fruit.

Dai ZW, Léon C, Feil R, Lunn JE, Delrot S, Gomès E.

J Exp Bot. 2013 Mar;64(5):1345-55. doi: 10.1093/jxb/ers396. Epub 2013 Jan 30.

PMID:
23364938
[PubMed - indexed for MEDLINE]
Free PMC Article
9.

Berry morphology and composition in irrigated and non-irrigated grapevine (Vitis vinifera L.).

Sofo A, Nuzzo V, Tataranni G, Manfra M, De Nisco M, Scopa A.

J Plant Physiol. 2012 Jul 15;169(11):1023-31. doi: 10.1016/j.jplph.2012.03.007. Epub 2012 May 12.

PMID:
22583647
[PubMed - indexed for MEDLINE]
10.

Genetic diversity and population structure assessed by SSR and SNP markers in a large germplasm collection of grape.

Emanuelli F, Lorenzi S, Grzeskowiak L, Catalano V, Stefanini M, Troggio M, Myles S, Martinez-Zapater JM, Zyprian E, Moreira FM, Grando MS.

BMC Plant Biol. 2013 Mar 7;13:39. doi: 10.1186/1471-2229-13-39.

PMID:
23497049
[PubMed - indexed for MEDLINE]
Free PMC Article
11.

Transporters expressed during grape berry (Vitis vinifera L.) development are associated with an increase in berry size and berry potassium accumulation.

Davies C, Shin R, Liu W, Thomas MR, Schachtman DP.

J Exp Bot. 2006;57(12):3209-16. Epub 2006 Aug 25.

PMID:
16936223
[PubMed - indexed for MEDLINE]
Free Article
12.

Deconvoluting effects of vine and soil properties on grape berry composition.

Zerihun A, McClymont L, Lanyon D, Goodwin I, Gibberd M.

J Sci Food Agric. 2014 Apr 22. doi: 10.1002/jsfa.6705. [Epub ahead of print]

PMID:
24756770
[PubMed - as supplied by publisher]
13.

Identification of microRNAs from Amur grape (Vitis amurensis Rupr.) by deep sequencing and analysis of microRNA variations with bioinformatics.

Wang C, Han J, Liu C, Kibet KN, Kayesh E, Shangguan L, Li X, Fang J.

BMC Genomics. 2012 Mar 29;13:122. doi: 10.1186/1471-2164-13-122.

PMID:
22455456
[PubMed - indexed for MEDLINE]
Free PMC Article
14.

The transcription factor VvMYB5b contributes to the regulation of anthocyanin and proanthocyanidin biosynthesis in developing grape berries.

Deluc L, Bogs J, Walker AR, Ferrier T, Decendit A, Merillon JM, Robinson SP, Barrieu F.

Plant Physiol. 2008 Aug;147(4):2041-53. doi: 10.1104/pp.108.118919. Epub 2008 Jun 6.

PMID:
18539781
[PubMed - indexed for MEDLINE]
Free PMC Article
15.
16.

Influence of a deficit irrigation regime during ripening on berry composition in grapevines (Vitis vinifera L.) grown in semi-arid areas.

López MI, Sánchez MT, Díaz A, Ramírez P, Morales J.

Int J Food Sci Nutr. 2007 Nov;58(7):491-507.

PMID:
17852488
[PubMed - indexed for MEDLINE]
17.

Rapid genomic characterization of the genus vitis.

Myles S, Chia JM, Hurwitz B, Simon C, Zhong GY, Buckler E, Ware D.

PLoS One. 2010 Jan 13;5(1):e8219. doi: 10.1371/journal.pone.0008219.

PMID:
20084295
[PubMed - indexed for MEDLINE]
Free PMC Article
18.

Berry and phenology-related traits in grapevine (Vitis vinifera L.): from quantitative trait loci to underlying genes.

Costantini L, Battilana J, Lamaj F, Fanizza G, Grando MS.

BMC Plant Biol. 2008 Apr 17;8:38. doi: 10.1186/1471-2229-8-38.

PMID:
18419811
[PubMed - indexed for MEDLINE]
Free PMC Article
19.

Patterns of sequence polymorphism in the fleshless berry locus in cultivated and wild Vitis vinifera accessions.

Houel C, Bounon R, Chaïb J, Guichard C, Péros JP, Bacilieri R, Dereeper A, Canaguier A, Lacombe T, N'Diaye A, Le Paslier MC, Vernerey MS, Coriton O, Brunel D, This P, Torregrosa L, Adam-Blondon AF.

BMC Plant Biol. 2010 Dec 22;10:284. doi: 10.1186/1471-2229-10-284.

PMID:
21176183
[PubMed - indexed for MEDLINE]
Free PMC Article
20.

Co-evolution between Grapevine rupestris stem pitting-associated virus and Vitis vinifera L. leads to decreased defence responses and increased transcription of genes related to photosynthesis.

Gambino G, Cuozzo D, Fasoli M, Pagliarani C, Vitali M, Boccacci P, Pezzotti M, Mannini F.

J Exp Bot. 2012 Oct;63(16):5919-33. doi: 10.1093/jxb/ers244. Epub 2012 Sep 17.

PMID:
22987838
[PubMed - indexed for MEDLINE]
Free Article

Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk