Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 105

1.

A high-throughput approach to identify genomic variants of bacterial metabolite producers at the single-cell level.

Binder S, Schendzielorz G, Stäbler N, Krumbach K, Hoffmann K, Bott M, Eggeling L.

Genome Biol. 2012 May 28;13(5):R40. doi: 10.1186/gb-2012-13-5-r40.

PMID:
22640862
[PubMed - indexed for MEDLINE]
Free PMC Article
2.

Recombineering in Corynebacterium glutamicum combined with optical nanosensors: a general strategy for fast producer strain generation.

Binder S, Siedler S, Marienhagen J, Bott M, Eggeling L.

Nucleic Acids Res. 2013 Jul;41(12):6360-9. doi: 10.1093/nar/gkt312. Epub 2013 Apr 28.

PMID:
23630315
[PubMed - indexed for MEDLINE]
Free PMC Article
3.

Next-generation sequencing-based genome-wide mutation analysis of L-lysine-producing Corynebacterium glutamicum ATCC 21300 strain.

Lee CS, Nam JY, Son ES, Kwon OC, Han W, Cho JY, Park YJ.

J Microbiol. 2012 Oct;50(5):860-3. doi: 10.1007/s12275-012-2109-2. Epub 2012 Nov 4.

PMID:
23124757
[PubMed - indexed for MEDLINE]
4.

A genome-based approach to create a minimally mutated Corynebacterium glutamicum strain for efficient L-lysine production.

Ikeda M, Ohnishi J, Hayashi M, Mitsuhashi S.

J Ind Microbiol Biotechnol. 2006 Jul;33(7):610-5. Epub 2006 Feb 28. Review.

PMID:
16506038
[PubMed - indexed for MEDLINE]
5.

Emerging Corynebacterium glutamicum systems biology.

Wendisch VF, Bott M, Kalinowski J, Oldiges M, Wiechert W.

J Biotechnol. 2006 Jun 25;124(1):74-92. Epub 2006 Jan 10. Review.

PMID:
16406159
[PubMed - indexed for MEDLINE]
6.

Large-scale engineering of the Corynebacterium glutamicum genome.

Suzuki N, Okayama S, Nonaka H, Tsuge Y, Inui M, Yukawa H.

Appl Environ Microbiol. 2005 Jun;71(6):3369-72.

PMID:
15933044
[PubMed - indexed for MEDLINE]
Free PMC Article
7.

Functional genomics and expression analysis of the Corynebacterium glutamicum fpr2-cysIXHDNYZ gene cluster involved in assimilatory sulphate reduction.

Rückert C, Koch DJ, Rey DA, Albersmeier A, Mormann S, Pühler A, Kalinowski J.

BMC Genomics. 2005 Sep 13;6:121.

PMID:
16159395
[PubMed - indexed for MEDLINE]
Free PMC Article
8.

General organization of the genes specifically involved in the diaminopimelate-lysine biosynthetic pathway of Corynebacterium glutamicum.

Yeh P, Sicard AM, Sinskey AJ.

Mol Gen Genet. 1988 Apr;212(1):105-11.

PMID:
3131636
[PubMed - indexed for MEDLINE]
9.

High-throughput transposon mutagenesis of Corynebacterium glutamicum and construction of a single-gene disruptant mutant library.

Suzuki N, Okai N, Nonaka H, Tsuge Y, Inui M, Yukawa H.

Appl Environ Microbiol. 2006 May;72(5):3750-5.

PMID:
16672528
[PubMed - indexed for MEDLINE]
Free PMC Article
10.

Random mutagenesis in Corynebacterium glutamicum ATCC 13032 using an IS6100-based transposon vector identified the last unknown gene in the histidine biosynthesis pathway.

Mormann S, Lömker A, Rückert C, Gaigalat L, Tauch A, Pühler A, Kalinowski J.

BMC Genomics. 2006 Aug 10;7:205.

PMID:
16901339
[PubMed - indexed for MEDLINE]
Free PMC Article
11.

Reengineering of a Corynebacterium glutamicum L-arginine and L-citrulline producer.

Ikeda M, Mitsuhashi S, Tanaka K, Hayashi M.

Appl Environ Microbiol. 2009 Mar;75(6):1635-41. doi: 10.1128/AEM.02027-08. Epub 2009 Jan 9.

PMID:
19139237
[PubMed - indexed for MEDLINE]
Free PMC Article
13.

A leuC mutation leading to increased L-lysine production and rel-independent global expression changes in Corynebacterium glutamicum.

Hayashi M, Mizoguchi H, Ohnishi J, Mitsuhashi S, Yonetani Y, Hashimoto S, Ikeda M.

Appl Microbiol Biotechnol. 2006 Oct;72(4):783-9. Epub 2006 Aug 30.

PMID:
16944136
[PubMed - indexed for MEDLINE]
14.

New multiple-deletion method for the Corynebacterium glutamicum genome, using a mutant lox sequence.

Suzuki N, Nonaka H, Tsuge Y, Inui M, Yukawa H.

Appl Environ Microbiol. 2005 Dec;71(12):8472-80.

PMID:
16332837
[PubMed - indexed for MEDLINE]
Free PMC Article
15.

High-throughput transposon mutagenesis of Corynebacterium glutamicum.

Suzuki N, Inui M, Yukawa H.

Methods Mol Biol. 2011;765:409-17. doi: 10.1007/978-1-61779-197-0_24.

PMID:
21815106
[PubMed - indexed for MEDLINE]
16.

The DtxR protein acting as dual transcriptional regulator directs a global regulatory network involved in iron metabolism of Corynebacterium glutamicum.

Brune I, Werner H, Hüser AT, Kalinowski J, Pühler A, Tauch A.

BMC Genomics. 2006 Feb 9;7:21.

PMID:
16469103
[PubMed - indexed for MEDLINE]
Free PMC Article
17.

Engineering of a glycerol utilization pathway for amino acid production by Corynebacterium glutamicum.

Rittmann D, Lindner SN, Wendisch VF.

Appl Environ Microbiol. 2008 Oct;74(20):6216-22. doi: 10.1128/AEM.00963-08. Epub 2008 Aug 29.

PMID:
18757581
[PubMed - indexed for MEDLINE]
Free PMC Article
18.

The GlxR regulon of the amino acid producer Corynebacterium glutamicum: Detection of the corynebacterial core regulon and integration into the transcriptional regulatory network model.

Kohl TA, Tauch A.

J Biotechnol. 2009 Sep 25;143(4):239-46. doi: 10.1016/j.jbiotec.2009.08.005. Epub 2009 Aug 7.

PMID:
19665500
[PubMed - indexed for MEDLINE]
19.

The glycosylated cell surface protein Rpf2, containing a resuscitation-promoting factor motif, is involved in intercellular communication of Corynebacterium glutamicum.

Hartmann M, Barsch A, Niehaus K, Pühler A, Tauch A, Kalinowski J.

Arch Microbiol. 2004 Oct;182(4):299-312. Epub 2004 Aug 3.

PMID:
15480574
[PubMed - indexed for MEDLINE]
20.

From zero to hero--design-based systems metabolic engineering of Corynebacterium glutamicum for L-lysine production.

Becker J, Zelder O, Häfner S, Schröder H, Wittmann C.

Metab Eng. 2011 Mar;13(2):159-68. doi: 10.1016/j.ymben.2011.01.003. Epub 2011 Jan 15.

PMID:
21241816
[PubMed - indexed for MEDLINE]

Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk