Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 281

1.

Complexity and integration in the control of inner-ear development.

Swiderski DL, Gong TW, Mustapha M.

Genome Biol. 2007;8(9):315. No abstract available.

PMID:
17915040
[PubMed - indexed for MEDLINE]
Free PMC Article
2.

Understanding inner ear development with gene expression profiling.

Chen ZY, Corey DP.

J Neurobiol. 2002 Nov 5;53(2):276-85. Review.

PMID:
12382281
[PubMed - indexed for MEDLINE]
3.

The roles of retinoic acid during inner ear development.

Romand R.

Curr Top Dev Biol. 2003;57:261-91. Review. No abstract available.

PMID:
14674484
[PubMed - indexed for MEDLINE]
4.

Zebrafish as a model for hearing and deafness.

Whitfield TT.

J Neurobiol. 2002 Nov 5;53(2):157-71. Review.

PMID:
12382273
[PubMed - indexed for MEDLINE]
5.

From placode to polarization: new tunes in inner ear development.

Barald KF, Kelley MW.

Development. 2004 Sep;131(17):4119-30. Review.

PMID:
15319325
[PubMed - indexed for MEDLINE]
Free Article
6.

Expression patterns of miR-96, miR-182 and miR-183 in the development inner ear.

Sacheli R, Nguyen L, Borgs L, Vandenbosch R, Bodson M, Lefebvre P, Malgrange B.

Gene Expr Patterns. 2009 Jun;9(5):364-70. doi: 10.1016/j.gep.2009.01.003.

PMID:
19602392
[PubMed - indexed for MEDLINE]
7.

Genetic insights into the morphogenesis of inner ear hair cells.

Frolenkov GI, Belyantseva IA, Friedman TB, Griffith AJ.

Nat Rev Genet. 2004 Jul;5(7):489-98. Review. No abstract available.

PMID:
15211351
[PubMed - indexed for MEDLINE]
8.

Molecular basis of inner ear induction.

Brown ST, Martin K, Groves AK.

Curr Top Dev Biol. 2003;57:115-49. Review. No abstract available.

PMID:
14674479
[PubMed - indexed for MEDLINE]
9.

Unraveling inner ear induction by gene manipulation using Pax2-Cre BAC transgenic mice.

Ohyama T.

Brain Res. 2009 Jun 24;1277:84-9. doi: 10.1016/j.brainres.2009.02.036. Epub 2009 Mar 2. Review.

PMID:
19265685
[PubMed - indexed for MEDLINE]
10.

Similarities between mice and humans with hereditary deafness.

Steel KP.

Ann N Y Acad Sci. 1991;630:68-79. Review. No abstract available.

PMID:
1952625
[PubMed - indexed for MEDLINE]
11.

Gap junctions and connexins in the inner ear: their roles in homeostasis and deafness.

Nickel R, Forge A.

Curr Opin Otolaryngol Head Neck Surg. 2008 Oct;16(5):452-7. doi: 10.1097/MOO.0b013e32830e20b0. Review.

PMID:
18797288
[PubMed - indexed for MEDLINE]
12.

Coordinated molecular control of otic capsule differentiation: functional role of Wnt5a signaling and opposition by sfrp3 activity.

Liu W, Li L, Li G, Garritano F, Shanske A, Frenz DA.

Growth Factors. 2008 Dec;26(6):343-54. doi: 10.1080/08977190802442013.

PMID:
18991062
[PubMed - indexed for MEDLINE]
13.

Otic mesenchyme expression of Cre recombinase directed by the inner ear enhancer of the Brn4/Pou3f4 gene.

Ahn KJ, Passero F Jr, Crenshaw EB 3rd.

Genesis. 2009 Mar;47(3):137-41. doi: 10.1002/dvg.20454.

PMID:
19217071
[PubMed - indexed for MEDLINE]
14.

Cross-regulation of Ngn1 and Math1 coordinates the production of neurons and sensory hair cells during inner ear development.

Raft S, Koundakjian EJ, Quinones H, Jayasena CS, Goodrich LV, Johnson JE, Segil N, Groves AK.

Development. 2007 Dec;134(24):4405-15.

PMID:
18039969
[PubMed - indexed for MEDLINE]
Free Article
15.

Progressive restriction of otic fate: the role of FGF and Wnt in resolving inner ear potential.

Freter S, Muta Y, Mak SS, Rinkwitz S, Ladher RK.

Development. 2008 Oct;135(20):3415-24. doi: 10.1242/dev.026674. Epub 2008 Sep 17.

PMID:
18799542
[PubMed - indexed for MEDLINE]
Free Article
16.

Involvement of platelet-derived growth factor receptor-beta in maintenance of mesenchyme and sensory epithelium of the neonatal mouse inner ear.

Hayashi H, Kunisada T, Takakura N, Aoki M, Mizuta K, Ito Y.

Hear Res. 2008 Nov;245(1-2):73-81. doi: 10.1016/j.heares.2008.08.011. Epub 2008 Sep 12.

PMID:
18817860
[PubMed - indexed for MEDLINE]
17.

Prox1 interacts with Atoh1 and Gfi1, and regulates cellular differentiation in the inner ear sensory epithelia.

Kirjavainen A, Sulg M, Heyd F, Alitalo K, Ylä-Herttuala S, Möröy T, Petrova TV, Pirvola U.

Dev Biol. 2008 Oct 1;322(1):33-45. doi: 10.1016/j.ydbio.2008.07.004. Epub 2008 Jul 9.

PMID:
18652815
[PubMed - indexed for MEDLINE]
Free Article
18.

Retinoic acid-induced inner ear teratogenesis caused by defective Fgf3/Fgf10-dependent Dlx5 signaling.

Liu W, Levi G, Shanske A, Frenz DA.

Birth Defects Res B Dev Reprod Toxicol. 2008 Apr;83(2):134-44. doi: 10.1002/bdrb.20154.

PMID:
18412219
[PubMed - indexed for MEDLINE]
19.

Utility of HoxB2 enhancer-mediated Cre activity for functional studies in the developing inner ear.

Szeto IY, Leung KK, Sham MH, Cheah KS.

Genesis. 2009 Jun;47(6):361-5. doi: 10.1002/dvg.20507.

PMID:
19370753
[PubMed - indexed for MEDLINE]
20.

Proteomic and functional analysis of NCS-1 binding proteins reveals novel signaling pathways required for inner ear development in zebrafish.

Petko JA, Kabbani N, Frey C, Woll M, Hickey K, Craig M, Canfield VA, Levenson R.

BMC Neurosci. 2009 Mar 25;10:27. doi: 10.1186/1471-2202-10-27.

PMID:
19320994
[PubMed - indexed for MEDLINE]
Free PMC Article

Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk