Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 53

1.

Sustained therapeutic reversal of Huntington's disease by transient repression of huntingtin synthesis.

Kordasiewicz HB, Stanek LM, Wancewicz EV, Mazur C, McAlonis MM, Pytel KA, Artates JW, Weiss A, Cheng SH, Shihabuddin LS, Hung G, Bennett CF, Cleveland DW.

Neuron. 2012 Jun 21;74(6):1031-44. doi: 10.1016/j.neuron.2012.05.009.

2.

Dysregulation of dopamine receptor D2 as a sensitive measure for Huntington disease pathology in model mice.

Crook ZR, Housman DE.

Proc Natl Acad Sci U S A. 2012 May 8;109(19):7487-92. doi: 10.1073/pnas.1204542109. Epub 2012 Apr 23.

3.

Allele-selective inhibition of trinucleotide repeat genes.

Matsui M, Corey DR.

Drug Discov Today. 2012 May;17(9-10):443-50. doi: 10.1016/j.drudis.2012.01.006. Epub 2012 Jan 18. Review.

4.

Six-month partial suppression of Huntingtin is well tolerated in the adult rhesus striatum.

Grondin R, Kaytor MD, Ai Y, Nelson PT, Thakker DR, Heisel J, Weatherspoon MR, Blum JL, Burright EN, Zhang Z, Kaemmerer WF.

Brain. 2012 Apr;135(Pt 4):1197-209. doi: 10.1093/brain/awr333. Epub 2012 Jan 16.

5.

Gene therapy for Huntington's disease.

Ramaswamy S, Kordower JH.

Neurobiol Dis. 2012 Nov;48(2):243-54. doi: 10.1016/j.nbd.2011.12.030. Epub 2011 Dec 24. Review.

PMID:
22222669
6.

Preclinical safety of RNAi-mediated HTT suppression in the rhesus macaque as a potential therapy for Huntington's disease.

McBride JL, Pitzer MR, Boudreau RL, Dufour B, Hobbs T, Ojeda SR, Davidson BL.

Mol Ther. 2011 Dec;19(12):2152-62. doi: 10.1038/mt.2011.219. Epub 2011 Oct 25.

7.

Huntington's disease: pathogenesis to animal models.

Kumar P, Kalonia H, Kumar A.

Pharmacol Rep. 2010 Jan-Feb;62(1):1-14. Review.

8.

Lentiviral vector-mediated gene transfer and RNA silencing technology in neuronal dysfunctions.

Dreyer JL.

Methods Mol Biol. 2010;614:3-35. doi: 10.1007/978-1-60761-533-0_1. Review.

PMID:
20225033
9.

KRAB-zinc finger proteins and KAP1 can mediate long-range transcriptional repression through heterochromatin spreading.

Groner AC, Meylan S, Ciuffi A, Zangger N, Ambrosini G, Dénervaud N, Bucher P, Trono D.

PLoS Genet. 2010 Mar 5;6(3):e1000869. doi: 10.1371/journal.pgen.1000869.

10.

The discovery of zinc fingers and their applications in gene regulation and genome manipulation.

Klug A.

Annu Rev Biochem. 2010;79:213-31. doi: 10.1146/annurev-biochem-010909-095056. Review.

PMID:
20192761
11.

Harnessing chaperone-mediated autophagy for the selective degradation of mutant huntingtin protein.

Bauer PO, Goswami A, Wong HK, Okuno M, Kurosawa M, Yamada M, Miyazaki H, Matsumoto G, Kino Y, Nagai Y, Nukina N.

Nat Biotechnol. 2010 Mar;28(3):256-63. doi: 10.1038/nbt.1608. Epub 2010 Feb 28.

PMID:
20190739
12.

Genome editing with modularly assembled zinc-finger nucleases.

Kim JS, Lee HJ, Carroll D.

Nat Methods. 2010 Feb;7(2):91; author reply 91-2. doi: 10.1038/nmeth0210-91a. No abstract available.

13.

Allele-selective inhibition of mutant huntingtin by peptide nucleic acid-peptide conjugates, locked nucleic acid, and small interfering RNA.

Hu J, Matsui M, Corey DR.

Ann N Y Acad Sci. 2009 Sep;1175:24-31. doi: 10.1111/j.1749-6632.2009.04975.x.

14.

Striatal expression of a calmodulin fragment improved motor function, weight loss, and neuropathology in the R6/2 mouse model of Huntington's disease.

Dai Y, Dudek NL, Li Q, Fowler SC, Muma NA.

J Neurosci. 2009 Sep 16;29(37):11550-9. doi: 10.1523/JNEUROSCI.3307-09.2009.

15.

Genetic knock-down of HDAC7 does not ameliorate disease pathogenesis in the R6/2 mouse model of Huntington's disease.

Benn CL, Butler R, Mariner L, Nixon J, Moffitt H, Mielcarek M, Woodman B, Bates GP.

PLoS One. 2009 Jun 1;4(6):e5747. doi: 10.1371/journal.pone.0005747.

16.

Zinc-finger directed double-strand breaks within CAG repeat tracts promote repeat instability in human cells.

Mittelman D, Moye C, Morton J, Sykoudis K, Lin Y, Carroll D, Wilson JH.

Proc Natl Acad Sci U S A. 2009 Jun 16;106(24):9607-12. doi: 10.1073/pnas.0902420106. Epub 2009 May 29.

17.

Targeted genome editing in human cells with zinc finger nucleases constructed via modular assembly.

Kim HJ, Lee HJ, Kim H, Cho SW, Kim JS.

Genome Res. 2009 Jul;19(7):1279-88. doi: 10.1101/gr.089417.108. Epub 2009 May 21.

18.

Allele-specific silencing of mutant huntingtin and ataxin-3 genes by targeting expanded CAG repeats in mRNAs.

Hu J, Matsui M, Gagnon KT, Schwartz JC, Gabillet S, Arar K, Wu J, Bezprozvanny I, Corey DR.

Nat Biotechnol. 2009 May;27(5):478-84. doi: 10.1038/nbt.1539. Epub 2009 May 3.

19.

Five siRNAs targeting three SNPs may provide therapy for three-quarters of Huntington's disease patients.

Pfister EL, Kennington L, Straubhaar J, Wagh S, Liu W, DiFiglia M, Landwehrmeyer B, Vonsattel JP, Zamore PD, Aronin N.

Curr Biol. 2009 May 12;19(9):774-8. doi: 10.1016/j.cub.2009.03.030. Epub 2009 Apr 9.

20.

Nonallele-specific silencing of mutant and wild-type huntingtin demonstrates therapeutic efficacy in Huntington's disease mice.

Boudreau RL, McBride JL, Martins I, Shen S, Xing Y, Carter BJ, Davidson BL.

Mol Ther. 2009 Jun;17(6):1053-63. doi: 10.1038/mt.2009.17. Epub 2009 Feb 24.

Items per page

Supplemental Content

Write to the Help Desk