Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 72

1.

GABAA receptor trafficking-mediated plasticity of inhibitory synapses.

Luscher B, Fuchs T, Kilpatrick CL.

Neuron. 2011 May 12;70(3):385-409. doi: 10.1016/j.neuron.2011.03.024. Review.

2.

Quantitative, high-resolution proteomics for data-driven systems biology.

Cox J, Mann M.

Annu Rev Biochem. 2011;80:273-99. doi: 10.1146/annurev-biochem-061308-093216. Review.

PMID:
21548781
3.

NMDA receptors in hippocampal GABAergic synapses and their role in nitric oxide signaling.

Szabadits E, Cserép C, Szonyi A, Fukazawa Y, Shigemoto R, Watanabe M, Itohara S, Freund TF, Nyiri G.

J Neurosci. 2011 Apr 20;31(16):5893-904. doi: 10.1523/JNEUROSCI.5938-10.2011.

4.

NMDA receptors regulate GABAA receptor lateral mobility and clustering at inhibitory synapses through serine 327 on the γ2 subunit.

Muir J, Arancibia-Carcamo IL, MacAskill AF, Smith KR, Griffin LD, Kittler JT.

Proc Natl Acad Sci U S A. 2010 Sep 21;107(38):16679-84. doi: 10.1073/pnas.1000589107. Epub 2010 Sep 7.

5.

Single particle tracking of alpha7 nicotinic AChR in hippocampal neurons reveals regulated confinement at glutamatergic and GABAergic perisynaptic sites.

Bürli T, Baer K, Ewers H, Sidler C, Fuhrer C, Fritschy JM.

PLoS One. 2010 Jul 9;5(7):e11507. doi: 10.1371/journal.pone.0011507.

6.

Complex role of collybistin and gephyrin in GABAA receptor clustering.

Saiepour L, Fuchs C, Patrizi A, Sassoè-Pognetto M, Harvey RJ, Harvey K.

J Biol Chem. 2010 Sep 17;285(38):29623-31. doi: 10.1074/jbc.M110.121368. Epub 2010 Jul 9.

7.

In vivo composition of NMDA receptor signaling complexes differs between membrane subdomains and is modulated by PSD-95 and PSD-93.

Delint-Ramirez I, Fernández E, Bayés A, Kicsi E, Komiyama NH, Grant SG.

J Neurosci. 2010 Jun 16;30(24):8162-70. doi: 10.1523/JNEUROSCI.1792-10.2010.

8.

Mechanisms underlying synapse-specific clustering of GABA(A) receptors.

Thomson AM, Jovanovic JN.

Eur J Neurosci. 2010 Jun;31(12):2193-203. doi: 10.1111/j.1460-9568.2010.07252.x. Epub 2010 Jun 9. Review.

PMID:
20550567
9.

An in vivo tethered toxin approach for the cell-autonomous inactivation of voltage-gated sodium channel currents in nociceptors.

Stürzebecher AS, Hu J, Smith ES, Frahm S, Santos-Torres J, Kampfrath B, Auer S, Lewin GR, Ibañez-Tallon I.

J Physiol. 2010 May 15;588(Pt 10):1695-707. doi: 10.1113/jphysiol.2010.187112. Epub 2010 Mar 22.

10.

A critical role for alpha4betadelta GABAA receptors in shaping learning deficits at puberty in mice.

Shen H, Sabaliauskas N, Sherpa A, Fenton AA, Stelzer A, Aoki C, Smith SS.

Science. 2010 Mar 19;327(5972):1515-8. doi: 10.1126/science.1184245.

11.

Silencing neurotransmission with membrane-tethered toxins.

Auer S, Stürzebecher AS, Jüttner R, Santos-Torres J, Hanack C, Frahm S, Liehl B, Ibañez-Tallon I.

Nat Methods. 2010 Mar;7(3):229-36. doi: 10.1038/nmeth.1425. Epub 2010 Feb 7.

PMID:
20139968
12.

Counting Synapses Using FIB/SEM Microscopy: A True Revolution for Ultrastructural Volume Reconstruction.

Merchán-Pérez A, Rodriguez JR, Alonso-Nanclares L, Schertel A, Defelipe J.

Front Neuroanat. 2009 Oct 5;3:18. doi: 10.3389/neuro.05.018.2009. eCollection 2009.

13.

Postsynaptic scaffolding molecules modulate the localization of neuroligins.

Levinson JN, Li R, Kang R, Moukhles H, El-Husseini A, Bamji SX.

Neuroscience. 2010 Feb 3;165(3):782-93. doi: 10.1016/j.neuroscience.2009.11.016. Epub 2009 Nov 13.

PMID:
19914352
14.

Ubiquitin-dependent lysosomal targeting of GABA(A) receptors regulates neuronal inhibition.

Arancibia-Cárcamo IL, Yuen EY, Muir J, Lumb MJ, Michels G, Saliba RS, Smart TG, Yan Z, Kittler JT, Moss SJ.

Proc Natl Acad Sci U S A. 2009 Oct 13;106(41):17552-7. doi: 10.1073/pnas.0905502106. Epub 2009 Oct 6.

15.

GABA(A) receptors, gephyrin and homeostatic synaptic plasticity.

Tyagarajan SK, Fritschy JM.

J Physiol. 2010 Jan 1;588(Pt 1):101-6. doi: 10.1113/jphysiol.2009.178517. Epub 2009 Sep 14. Review.

16.

Neurobeachin, a protein implicated in membrane protein traffic and autism, is required for the formation and functioning of central synapses.

Medrihan L, Rohlmann A, Fairless R, Andrae J, Döring M, Missler M, Zhang W, Kilimann MW.

J Physiol. 2009 Nov 1;587(Pt 21):5095-106. doi: 10.1113/jphysiol.2009.178236. Epub 2009 Sep 1.

17.

Neuroproteomics: understanding the molecular organization and complexity of the brain.

Bayés A, Grant SG.

Nat Rev Neurosci. 2009 Sep;10(9):635-46. doi: 10.1038/nrn2701. Review.

PMID:
19693028
18.

Presynaptic plasticity: targeted control of inhibitory networks.

McBain CJ, Kauer JA.

Curr Opin Neurobiol. 2009 Jun;19(3):254-62. doi: 10.1016/j.conb.2009.05.008. Epub 2009 Jul 4. Review.

19.

Proteomic studies of a single CNS synapse type: the parallel fiber/purkinje cell synapse.

Selimi F, Cristea IM, Heller E, Chait BT, Heintz N.

PLoS Biol. 2009 Apr 14;7(4):e83. doi: 10.1371/journal.pbio.1000083.

20.

Septin 11 is present in GABAergic synapses and plays a functional role in the cytoarchitecture of neurons and GABAergic synaptic connectivity.

Li X, Serwanski DR, Miralles CP, Nagata K, De Blas AL.

J Biol Chem. 2009 Jun 19;284(25):17253-65. doi: 10.1074/jbc.M109.008870. Epub 2009 Apr 20.

Items per page

Supplemental Content

Write to the Help Desk