Format
Items per page
Sort by

Send to:

Choose Destination

Links from PubMed

Items: 1 to 20 of 53

1.

Altered palmitoylation and neuropathological deficits in mice lacking HIP14.

Singaraja RR, Huang K, Sanders SS, Milnerwood AJ, Hines R, Lerch JP, Franciosi S, Drisdel RC, Vaid K, Young FB, Doty C, Wan J, Bissada N, Henkelman RM, Green WN, Davis NG, Raymond LA, Hayden MR.

Hum Mol Genet. 2011 Oct 15;20(20):3899-909. doi: 10.1093/hmg/ddr308. Epub 2011 Jul 20.

2.

Gene expression profiling of R6/2 transgenic mice with different CAG repeat lengths reveals genes associated with disease onset and progression in Huntington's disease.

Tang B, Seredenina T, Coppola G, Kuhn A, Geschwind DH, Luthi-Carter R, Thomas EA.

Neurobiol Dis. 2011 Jun;42(3):459-67. doi: 10.1016/j.nbd.2011.02.008. Epub 2011 Feb 18.

3.

Early autophagic response in a novel knock-in model of Huntington disease.

Heng MY, Duong DK, Albin RL, Tallaksen-Greene SJ, Hunter JM, Lesort MJ, Osmand A, Paulson HL, Detloff PJ.

Hum Mol Genet. 2010 Oct 1;19(19):3702-20. doi: 10.1093/hmg/ddq285. Epub 2010 Jul 8.

4.

Alterations in striatal synaptic transmission are consistent across genetic mouse models of Huntington's disease.

Cummings DM, Cepeda C, Levine MS.

ASN Neuro. 2010 Jun 18;2(3):e00036. doi: 10.1042/AN20100007.

5.

Alterations in cortical excitation and inhibition in genetic mouse models of Huntington's disease.

Cummings DM, André VM, Uzgil BO, Gee SM, Fisher YE, Cepeda C, Levine MS.

J Neurosci. 2009 Aug 19;29(33):10371-86. doi: 10.1523/JNEUROSCI.1592-09.2009.

6.

Alterations in corticostriatal synaptic plasticity in mice overexpressing human alpha-synuclein.

Watson JB, Hatami A, David H, Masliah E, Roberts K, Evans CE, Levine MS.

Neuroscience. 2009 Mar 17;159(2):501-13. doi: 10.1016/j.neuroscience.2009.01.021.

7.

Age-dependent alterations of corticostriatal activity in the YAC128 mouse model of Huntington disease.

Joshi PR, Wu NP, André VM, Cummings DM, Cepeda C, Joyce JA, Carroll JB, Leavitt BR, Hayden MR, Levine MS, Bamford NS.

J Neurosci. 2009 Feb 25;29(8):2414-27. doi: 10.1523/JNEUROSCI.5687-08.2009.

8.

Differential susceptibility to excitotoxic stress in YAC128 mouse models of Huntington disease between initiation and progression of disease.

Graham RK, Pouladi MA, Joshi P, Lu G, Deng Y, Wu NP, Figueroa BE, Metzler M, André VM, Slow EJ, Raymond L, Friedlander R, Levine MS, Leavitt BR, Hayden MR.

J Neurosci. 2009 Feb 18;29(7):2193-204. doi: 10.1523/JNEUROSCI.5473-08.2009.

9.

Paradoxical delay in the onset of disease caused by super-long CAG repeat expansions in R6/2 mice.

Morton AJ, Glynn D, Leavens W, Zheng Z, Faull RL, Skepper JN, Wight JM.

Neurobiol Dis. 2009 Mar;33(3):331-41. doi: 10.1016/j.nbd.2008.11.015. Epub 2008 Dec 11.

PMID:
19130884
10.

CAG repeat lengths > or =335 attenuate the phenotype in the R6/2 Huntington's disease transgenic mouse.

Dragatsis I, Goldowitz D, Del Mar N, Deng YP, Meade CA, Liu L, Sun Z, Dietrich P, Yue J, Reiner A.

Neurobiol Dis. 2009 Mar;33(3):315-30. doi: 10.1016/j.nbd.2008.10.009. Epub 2008 Nov 6.

11.

Extensive early motor and non-motor behavioral deficits are followed by striatal neuronal loss in knock-in Huntington's disease mice.

Hickey MA, Kosmalska A, Enayati J, Cohen R, Zeitlin S, Levine MS, Chesselet MF.

Neuroscience. 2008 Nov 11;157(1):280-95. doi: 10.1016/j.neuroscience.2008.08.041. Epub 2008 Aug 27.

12.

Altered information processing in the prefrontal cortex of Huntington's disease mouse models.

Walker AG, Miller BR, Fritsch JN, Barton SJ, Rebec GV.

J Neurosci. 2008 Sep 3;28(36):8973-82. doi: 10.1523/JNEUROSCI.2804-08.2008.

13.

Dysregulated information processing by medium spiny neurons in striatum of freely behaving mouse models of Huntington's disease.

Miller BR, Walker AG, Shah AS, Barton SJ, Rebec GV.

J Neurophysiol. 2008 Oct;100(4):2205-16. doi: 10.1152/jn.90606.2008. Epub 2008 Jul 30.

14.
15.

Longitudinal evaluation of the Hdh(CAG)150 knock-in murine model of Huntington's disease.

Heng MY, Tallaksen-Greene SJ, Detloff PJ, Albin RL.

J Neurosci. 2007 Aug 22;27(34):8989-98.

16.

Pathological cell-cell interactions are necessary for striatal pathogenesis in a conditional mouse model of Huntington's disease.

Gu X, André VM, Cepeda C, Li SH, Li XJ, Levine MS, Yang XW.

Mol Neurodegener. 2007 Apr 30;2:8.

17.

Progressive CAG expansion in the brain of a novel R6/1-89Q mouse model of Huntington's disease with delayed phenotypic onset.

Vatsavayai SC, Dallérac GM, Milnerwood AJ, Cummings DM, Rezaie P, Murphy KP, Hirst MC.

Brain Res Bull. 2007 Apr 30;72(2-3):98-102. Epub 2006 Nov 13.

PMID:
17352932
18.

The Hdh(Q150/Q150) knock-in mouse model of HD and the R6/2 exon 1 model develop comparable and widespread molecular phenotypes.

Woodman B, Butler R, Landles C, Lupton MK, Tse J, Hockly E, Moffitt H, Sathasivam K, Bates GP.

Brain Res Bull. 2007 Apr 30;72(2-3):83-97. Epub 2006 Dec 5.

PMID:
17352931
19.

The relationship between CAG repeat length and age of onset differs for Huntington's disease patients with juvenile onset or adult onset.

Andresen JM, Gayán J, Djoussé L, Roberts S, Brocklebank D, Cherny SS; US-Venezuela Collaborative Research Group; HD MAPS Collaborative Research Group, Cardon LR, Gusella JF, MacDonald ME, Myers RH, Housman DE, Wexler NS.

Ann Hum Genet. 2007 May;71(Pt 3):295-301. Epub 2006 Dec 19.

20.

The corticostriatal pathway in Huntington's disease.

Cepeda C, Wu N, André VM, Cummings DM, Levine MS.

Prog Neurobiol. 2007 Apr;81(5-6):253-71. Epub 2006 Dec 13. Review.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk