Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 44

1.

Cells of origin in cancer.

Visvader JE.

Nature. 2011 Jan 20;469(7330):314-22. doi: 10.1038/nature09781. Review.

PMID:
21248838
2.

Inositol polyphosphate 4-phosphatase II regulates PI3K/Akt signaling and is lost in human basal-like breast cancers.

Fedele CG, Ooms LM, Ho M, Vieusseux J, O'Toole SA, Millar EK, Lopez-Knowles E, Sriratana A, Gurung R, Baglietto L, Giles GG, Bailey CG, Rasko JE, Shields BJ, Price JT, Majerus PW, Sutherland RL, Tiganis T, McLean CA, Mitchell CA.

Proc Natl Acad Sci U S A. 2010 Dec 21;107(51):22231-6. doi: 10.1073/pnas.1015245107. Epub 2010 Dec 2.

3.

Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer.

Prat A, Parker JS, Karginova O, Fan C, Livasy C, Herschkowitz JI, He X, Perou CM.

Breast Cancer Res. 2010;12(5):R68. doi: 10.1186/bcr2635. Epub 2010 Sep 2.

4.

s-SHIP promoter expression marks activated stem cells in developing mouse mammary tissue.

Bai L, Rohrschneider LR.

Genes Dev. 2010 Sep 1;24(17):1882-92. doi: 10.1101/gad.1932810.

5.

BRCA1 basal-like breast cancers originate from luminal epithelial progenitors and not from basal stem cells.

Molyneux G, Geyer FC, Magnay FA, McCarthy A, Kendrick H, Natrajan R, Mackay A, Grigoriadis A, Tutt A, Ashworth A, Reis-Filho JS, Smalley MJ.

Cell Stem Cell. 2010 Sep 3;7(3):403-17. doi: 10.1016/j.stem.2010.07.010.

6.

Core epithelial-to-mesenchymal transition interactome gene-expression signature is associated with claudin-low and metaplastic breast cancer subtypes.

Taube JH, Herschkowitz JI, Komurov K, Zhou AY, Gupta S, Yang J, Hartwell K, Onder TT, Gupta PB, Evans KW, Hollier BG, Ram PT, Lander ES, Rosen JM, Weinberg RA, Mani SA.

Proc Natl Acad Sci U S A. 2010 Aug 31;107(35):15449-54. doi: 10.1073/pnas.1004900107. Epub 2010 Aug 16. Erratum in: Proc Natl Acad Sci U S A. 2010 Nov 2;107(44):19132.

7.

Cancer statistics, 2010.

Jemal A, Siegel R, Xu J, Ward E.

CA Cancer J Clin. 2010 Sep-Oct;60(5):277-300. doi: 10.3322/caac.20073. Epub 2010 Jul 7. Erratum in: CA Cancer J Clin. 2011 Mar-Apr;61(2):133-4.

8.

Small players with big roles: microRNAs as targets to inhibit breast cancer progression.

Greene SB, Herschkowitz JI, Rosen JM.

Curr Drug Targets. 2010 Sep;11(9):1059-73. Review.

9.

The pathology of EMT in mouse mammary tumorigenesis.

Cardiff RD.

J Mammary Gland Biol Neoplasia. 2010 Jun;15(2):225-33. doi: 10.1007/s10911-010-9184-y. Epub 2010 Jun 4. Review.

10.

Selective targeting of radiation-resistant tumor-initiating cells.

Zhang M, Atkinson RL, Rosen JM.

Proc Natl Acad Sci U S A. 2010 Feb 23;107(8):3522-7. doi: 10.1073/pnas.0910179107. Epub 2010 Feb 3.

11.

The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs.

Wellner U, Schubert J, Burk UC, Schmalhofer O, Zhu F, Sonntag A, Waldvogel B, Vannier C, Darling D, zur Hausen A, Brunton VG, Morton J, Sansom O, Schüler J, Stemmler MP, Herzberger C, Hopt U, Keck T, Brabletz S, Brabletz T.

Nat Cell Biol. 2009 Dec;11(12):1487-95. doi: 10.1038/ncb1998. Epub 2009 Nov 22.

PMID:
19935649
12.

Genetic heterogeneity of Myc-induced mammary tumors reflecting diverse phenotypes including metastatic potential.

Andrechek ER, Cardiff RD, Chang JT, Gatza ML, Acharya CR, Potti A, Nevins JR.

Proc Natl Acad Sci U S A. 2009 Sep 22;106(38):16387-92. doi: 10.1073/pnas.0901250106. Epub 2009 Sep 4.

13.

Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells.

Shimono Y, Zabala M, Cho RW, Lobo N, Dalerba P, Qian D, Diehn M, Liu H, Panula SP, Chiao E, Dirbas FM, Somlo G, Pera RA, Lao K, Clarke MF.

Cell. 2009 Aug 7;138(3):592-603. doi: 10.1016/j.cell.2009.07.011.

14.

Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers.

Lim E, Vaillant F, Wu D, Forrest NC, Pal B, Hart AH, Asselin-Labat ML, Gyorki DE, Ward T, Partanen A, Feleppa F, Huschtscha LI, Thorne HJ; kConFab, Fox SB, Yan M, French JD, Brown MA, Smyth GK, Visvader JE, Lindeman GJ.

Nat Med. 2009 Aug;15(8):907-13. doi: 10.1038/nm.2000. Epub 2009 Aug 2.

PMID:
19648928
15.

Evidence that inositol polyphosphate 4-phosphatase type II is a tumor suppressor that inhibits PI3K signaling.

Gewinner C, Wang ZC, Richardson A, Teruya-Feldstein J, Etemadmoghadam D, Bowtell D, Barretina J, Lin WM, Rameh L, Salmena L, Pandolfi PP, Cantley LC.

Cancer Cell. 2009 Aug 4;16(2):115-25. doi: 10.1016/j.ccr.2009.06.006.

16.

Met induces mammary tumors with diverse histologies and is associated with poor outcome and human basal breast cancer.

Ponzo MG, Lesurf R, Petkiewicz S, O'Malley FP, Pinnaduwage D, Andrulis IL, Bull SB, Chughtai N, Zuo D, Souleimanova M, Germain D, Omeroglu A, Cardiff RD, Hallett M, Park M.

Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):12903-8. doi: 10.1073/pnas.0810402106. Epub 2009 Jul 17.

17.

CDK inhibitor p18(INK4c) is a downstream target of GATA3 and restrains mammary luminal progenitor cell proliferation and tumorigenesis.

Pei XH, Bai F, Smith MD, Usary J, Fan C, Pai SY, Ho IC, Perou CM, Xiong Y.

Cancer Cell. 2009 May 5;15(5):389-401. doi: 10.1016/j.ccr.2009.03.004.

18.

Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits.

Polyak K, Weinberg RA.

Nat Rev Cancer. 2009 Apr;9(4):265-73. doi: 10.1038/nrc2620. Epub 2009 Mar 5. Review.

PMID:
19262571
19.

Crypt stem cells as the cells-of-origin of intestinal cancer.

Barker N, Ridgway RA, van Es JH, van de Wetering M, Begthel H, van den Born M, Danenberg E, Clarke AR, Sansom OJ, Clevers H.

Nature. 2009 Jan 29;457(7229):608-11. doi: 10.1038/nature07602. Epub 2008 Dec 17.

PMID:
19092804
20.

The functional loss of the retinoblastoma tumour suppressor is a common event in basal-like and luminal B breast carcinomas.

Herschkowitz JI, He X, Fan C, Perou CM.

Breast Cancer Res. 2008;10(5):R75. doi: 10.1186/bcr2142. Epub 2008 Sep 9.

Items per page

Supplemental Content

Write to the Help Desk