Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 31

1.

C-terminal domain phosphorylation of ERK3 controlled by Cdk1 and Cdc14 regulates its stability in mitosis.

Tanguay PL, Rodier G, Meloche S.

Biochem J. 2010 Apr 28;428(1):103-11. doi: 10.1042/BJ20091604.

PMID:
20236090
2.

Involvement of Rac/Cdc42/PAK pathway in cytoskeletal rearrangements.

Szczepanowska J.

Acta Biochim Pol. 2009;56(2):225-34. Epub 2009 Jun 10. Review.

3.

PAK signaling in oncogenesis.

Molli PR, Li DQ, Murray BW, Rayala SK, Kumar R.

Oncogene. 2009 Jul 16;28(28):2545-55. doi: 10.1038/onc.2009.119. Epub 2009 May 25. Review.

4.

PKA-induced F-actin rearrangement requires phosphorylation of Hsp27 by the MAPKAP kinase MK5.

Kostenko S, Johannessen M, Moens U.

Cell Signal. 2009 May;21(5):712-8. doi: 10.1016/j.cellsig.2009.01.009. Epub 2009 Jan 8.

PMID:
19166925
5.

Pak protein kinases and their role in cancer.

Dummler B, Ohshiro K, Kumar R, Field J.

Cancer Metastasis Rev. 2009 Jun;28(1-2):51-63. doi: 10.1007/s10555-008-9168-1. Review.

6.

Activation loop phosphorylation of the atypical MAP kinases ERK3 and ERK4 is required for binding, activation and cytoplasmic relocalization of MK5.

Déléris P, Rousseau J, Coulombe P, Rodier G, Tanguay PL, Meloche S.

J Cell Physiol. 2008 Dec;217(3):778-88. doi: 10.1002/jcp.21560.

PMID:
18720373
7.

The Ser(186) phospho-acceptor site within ERK4 is essential for its ability to interact with and activate PRAK/MK5.

Perander M, Aberg E, Johansen B, Dreyer B, Guldvik IJ, Outzen H, Keyse SM, Seternes OM.

Biochem J. 2008 May 1;411(3):613-22. doi: 10.1042/BJ20071369.

PMID:
18248330
8.

A tale of two Paks.

Arias-Romero LE, Chernoff J.

Biol Cell. 2008 Feb;100(2):97-108. doi: 10.1042/BC20070109. Review.

PMID:
18199048
9.
10.

14-3-3epsilon inhibits MK5-mediated cell migration by disrupting F-actin polymerization.

Tak H, Jang E, Kim SB, Park J, Suk J, Yoon YS, Ahn JK, Lee JH, Joe CO.

Cell Signal. 2007 Nov;19(11):2379-87. Epub 2007 Jul 31.

PMID:
17728103
11.

Specificity profiling of Pak kinases allows identification of novel phosphorylation sites.

Rennefahrt UE, Deacon SW, Parker SA, Devarajan K, Beeser A, Chernoff J, Knapp S, Turk BE, Peterson JR.

J Biol Chem. 2007 May 25;282(21):15667-78. Epub 2007 Mar 28.

12.

Atypical mitogen-activated protein kinases: structure, regulation and functions.

Coulombe P, Meloche S.

Biochim Biophys Acta. 2007 Aug;1773(8):1376-87. Epub 2006 Nov 7. Review.

13.

Characterization of the atypical MAPK ERK4 and its activation of the MAPK-activated protein kinase MK5.

Kant S, Schumacher S, Singh MK, Kispert A, Kotlyarov A, Gaestel M.

J Biol Chem. 2006 Nov 17;281(46):35511-9. Epub 2006 Sep 13.

14.

Regulation of MAPK-activated protein kinase 5 activity and subcellular localization by the atypical MAPK ERK4/MAPK4.

Aberg E, Perander M, Johansen B, Julien C, Meloche S, Keyse SM, Seternes OM.

J Biol Chem. 2006 Nov 17;281(46):35499-510. Epub 2006 Sep 13.

15.

Sample preparation and digestion for proteomic analyses using spin filters.

Manza LL, Stamer SL, Ham AJ, Codreanu SG, Liebler DC.

Proteomics. 2005 May;5(7):1742-5.

PMID:
15761957
16.

Activation of MK5/PRAK by the atypical MAP kinase ERK3 defines a novel signal transduction pathway.

Seternes OM, Mikalsen T, Johansen B, Michaelsen E, Armstrong CG, Morrice NA, Turgeon B, Meloche S, Moens U, Keyse SM.

EMBO J. 2004 Dec 8;23(24):4780-91. Epub 2004 Dec 2. Erratum in: EMBO J. 2005 Feb 23;24(4):873.

17.

Scaffolding by ERK3 regulates MK5 in development.

Schumacher S, Laass K, Kant S, Shi Y, Visel A, Gruber AD, Kotlyarov A, Gaestel M.

EMBO J. 2004 Dec 8;23(24):4770-9. Epub 2004 Nov 11.

18.

The genetics of Pak.

Hofmann C, Shepelev M, Chernoff J.

J Cell Sci. 2004 Sep 1;117(Pt 19):4343-54. Review.

19.

Nuclear export of ERK3 by a CRM1-dependent mechanism regulates its inhibitory action on cell cycle progression.

Julien C, Coulombe P, Meloche S.

J Biol Chem. 2003 Oct 24;278(43):42615-24. Epub 2003 Aug 12.

Items per page

Supplemental Content

Write to the Help Desk