Format
Items per page
Sort by

Send to:

Choose Destination

Links from PubMed

Items: 1 to 20 of 41

1.

A conserved germline multipotency program.

Juliano CE, Swartz SZ, Wessel GM.

Development. 2010 Dec;137(24):4113-26. doi: 10.1242/dev.047969.

2.

Post-translational regulation by gustavus contributes to selective Vasa protein accumulation in multipotent cells during embryogenesis.

Gustafson EA, Yajima M, Juliano CE, Wessel GM.

Dev Biol. 2011 Jan 15;349(2):440-50. doi: 10.1016/j.ydbio.2010.10.031. Epub 2010 Oct 28.

3.

Developmental biology. Versatile germline genes.

Juliano C, Wessel G.

Science. 2010 Aug 6;329(5992):640-1. doi: 10.1126/science.1194037. No abstract available.

4.

Regulation of Drosophila vasa in vivo through paralogous cullin-RING E3 ligase specificity receptors.

Kugler JM, Woo JS, Oh BH, Lasko P.

Mol Cell Biol. 2010 Apr;30(7):1769-82. doi: 10.1128/MCB.01100-09. Epub 2010 Feb 1.

5.

Nanos functions to maintain the fate of the small micromere lineage in the sea urchin embryo.

Juliano CE, Yajima M, Wessel GM.

Dev Biol. 2010 Jan 15;337(2):220-32. doi: 10.1016/j.ydbio.2009.10.030. Epub 2009 Oct 28.

6.

An evolutionary transition of Vasa regulation in echinoderms.

Juliano CE, Wessel GM.

Evol Dev. 2009 Sep-Oct;11(5):560-73. doi: 10.1111/j.1525-142X.2009.00362.x.

7.

Global regulatory logic for specification of an embryonic cell lineage.

Oliveri P, Tu Q, Davidson EH.

Proc Natl Acad Sci U S A. 2008 Apr 22;105(16):5955-62. doi: 10.1073/pnas.0711220105. Epub 2008 Apr 14.

8.

Vasa protein expression is restricted to the small micromeres of the sea urchin, but is inducible in other lineages early in development.

Voronina E, Lopez M, Juliano CE, Gustafson E, Song JL, Extavour C, George S, Oliveri P, McClay D, Wessel G.

Dev Biol. 2008 Feb 15;314(2):276-86. doi: 10.1016/j.ydbio.2007.11.039. Epub 2008 Jan 14.

9.

The DEAD box RNA helicase VBH-1 is required for germ cell function in C. elegans.

Salinas LS, Maldonado E, Macías-Silva M, Blackwell TK, Navarro RE.

Genesis. 2007 Sep;45(9):533-46.

PMID:
17868112
10.

A switch in the cellular basis of skeletogenesis in late-stage sea urchin larvae.

Yajima M.

Dev Biol. 2007 Jul 15;307(2):272-81. Epub 2007 May 6.

12.

Functional redundancy among Nanos proteins and a distinct role of Nanos2 during male germ cell development.

Suzuki A, Tsuda M, Saga Y.

Development. 2007 Jan;134(1):77-83. Epub 2006 Nov 30.

13.

Pathway to totipotency: lessons from germ cells.

Seydoux G, Braun RE.

Cell. 2006 Dec 1;127(5):891-904. Review.

14.

Germ line determinants are not localized early in sea urchin development, but do accumulate in the small micromere lineage.

Juliano CE, Voronina E, Stack C, Aldrich M, Cameron AR, Wessel GM.

Dev Biol. 2006 Dec 1;300(1):406-15. Epub 2006 Aug 4.

15.

Dynamic redistribution of vasa homolog and exclusion of somatic cell determinants during germ cell specification in Ciona intestinalis.

Shirae-Kurabayashi M, Nishikata T, Takamura K, Tanaka KJ, Nakamoto C, Nakamura A.

Development. 2006 Jul;133(14):2683-93.

16.

Developmental potential of small micromeres in sea urchin embryos.

Kurihara H, Amemiya S.

Zoolog Sci. 2005 Aug;22(8):845-52.

PMID:
16141697
17.

Left-right asymmetry in the sea urchin embryo is regulated by nodal signaling on the right side.

Duboc V, Röttinger E, Lapraz F, Besnardeau L, Lepage T.

Dev Cell. 2005 Jul;9(1):147-58.

18.
19.

Nanos maintains germline stem cell self-renewal by preventing differentiation.

Wang Z, Lin H.

Science. 2004 Mar 26;303(5666):2016-9. Epub 2004 Feb 19.

20.

The mechanics of sea urchin development.

HORSTADIUS S.

Annee Biol. 1950 Aug;26(8):381-98. No abstract available.

PMID:
14790592
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk